
Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
http://www.cypress.com

PSoC® Creator™

Component Author Guide
Document # 001-42697 Rev. *T

http://www.cypress.com

2 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

© Cypress Semiconductor Corporation, 2007-2017.

This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC
("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is
owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide.
Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant
any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied
by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under
its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely
for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress
hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by
Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any
other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without
further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems
(including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other
uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses").
A critical Component is any Component of a device or system whose failure to perform can be reasonably expected to cause
the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses
of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their
respective owners.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 3

Contents

1. Introduction 9

1.1 What is a PSoC Creator Component?..9
1.2 Component Interaction ...10
1.3 Component Creation Process Overview...11
1.4 Cypress Component Requirements..11

1.4.1 File Names ..11
1.4.2 Name Considerations..11
1.4.3 File Name Length Limitations..11
1.4.4 Component Versioning..12

1.5 Component Parameter Overview ...13
1.5.1 Formal versus Local Parameters ..13
1.5.2 Built-In Parameters ...15

1.5.2.1 Formals:...15
1.5.2.2 Locals: ...16

1.5.3 Expression Functions..18
1.5.3.1 Device Information Functions ..18
1.5.3.2 Component Information Functions ..19
1.5.3.3 Misc. / Utility Functions..20
1.5.3.4 Deprecated Functions ...21

1.5.4 User-Defined Types ..22
1.6 References ...22
1.7 Conventions Used in this Guide ...22
1.8 Revision History..23

2. Creating Projects and Components 25

2.1 Create a Library Project..25
2.2 Add a Component Item (Symbol) ...27

2.2.1 Create an Empty Symbol ..27
2.2.2 Create a Symbol using the Wizard..29

3. Defining Symbol Information 31

3.1 Define Symbol Parameters...31
3.2 Add Parameter Validators...35
3.3 Add User-Defined Types ..36
3.4 Specify Document Properties ...37

3.4.1 Create External Component..38
3.4.2 Define Catalog Placement ..38
3.4.3 Add Custom Context Menu ...39

3.5 Define Format Shape Properties ..42
3.5.1 Common Shape Properties...42
3.5.2 Advanced Shape Properties ...42

4 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Contents

4. Adding an Implementation 43

4.1 Implement with a Schematic...45
4.1.1 Add a Schematic...45
4.1.2 Complete the Schematic...46

4.1.2.1 Design-Wide Resources (DWR) Settings..46
4.2 Create a Schematic Macro ...46

4.2.1 Add a Schematic Macro Document ..47
4.2.2 Define the Macro ..47
4.2.3 Versioning ...48
4.2.4 Component Update Tool ...48
4.2.5 Macro File Naming Conventions...49

4.2.5.1 Macro and Symbol with Same Name..49
4.2.6 Document Properties ..49

4.2.6.1 Component Catalog Placement ..49
4.2.6.2 Summary Text ...49
4.2.6.3 Hidden Property ..49

4.2.7 Macro Datasheets...49
4.2.8 Post-Processing of the Macro...49
4.2.9 Example..50

4.3 Implement a UDB Component..50
4.3.1 Introduction to UDB Hardware..50

4.3.1.1 UDB Overview...51
4.3.1.2 Datapath Operation ...52

4.3.2 Implement with UDB Editor...55
4.3.3 Implement with Verilog..55

4.3.3.1 Verilog File Requirements ...55
4.3.3.2 Add a Verilog File ..56
4.3.3.3 Complete the Verilog file ...56

4.3.4 UDB Elements ..56
4.3.4.1 Clock/Enable Specification..57
4.3.4.2 Datapath(s)..57
4.3.4.3 Control Register ..62
4.3.4.4 Status Register..63
4.3.4.5 Count7...65

4.3.5 Fixed Blocks ...66
4.3.6 Design-Wide Resources ...66
4.3.7 When to use Cypress Provided Primitives instead of Logic66
4.3.8 Warp Features for Component Creation...66

4.3.8.1 Generate Statements ..66
4.4 Implement with Software ..68
4.5 Exclude a Component ..69

5. Simulating the Hardware 71

5.1 Simulation Environment..71
5.2 Model Location ...72
5.3 Test Bench Development ...72

5.3.1 Providing the CPU Clock ..72
5.3.1.1 CPU Clock Example..72

5.3.2 Register Access Tasks..73
5.3.2.1 FIFO Write...73
5.3.2.2 FIFO Read...74
5.3.2.3 Register Read ...74

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 5

Contents

5.3.2.4 Register Write..74
5.3.2.5 Status Read...74
5.3.2.6 Control Write..74

6. Adding API Files 75

6.1 API Overview ..75
6.1.1 API generation ..75
6.1.2 File Naming...75
6.1.3 API Template Expansion ...75

6.1.3.1 Parameters ..75
6.1.3.2 User-Defined Types...76

6.1.4 Conditional API Generation...77
6.1.5 Verilog Hierarchy Subsitution ..77
6.1.6 Macro Callbacks..77

6.1.6.1 Multiple Callbacks..77
6.1.6.2 User Code ...78
6.1.6.3 Inlining ...78

6.1.7 Optional Merge Region ...78
6.1.8 API Cases ...78

6.2 Add API Files to a Component ...79
6.3 Complete the .c file ...79
6.4 Complete the .h file...80

7. Finishing the Component 81

7.1 Add/Create Datasheet ..81
7.2 Add Control File ..82
7.3 Add/Create Debug XML File...83

7.3.1 XML Format ..83
7.3.2 Example XML File ...86
7.3.3 Example Windows...87

7.3.3.1 Select Component Instance Debug Window ...87
7.3.3.2 Component Instance Debug Window ..88

7.3.4 Registers Window ...89
7.4 Add/Create DMA Capability File ...91

7.4.1 Adding a DMA Capability File to a Component:..91
7.4.2 Editing Component Header File: ...91
7.4.3 Completing the DMA Capability File: ..92

7.4.3.1 Category Name ...92
7.4.3.2 Enabled ...93
7.4.3.3 Bytes In Burst ..94
7.4.3.4 Bytes in Burst is Strict..95
7.4.3.5 Spoke Width ..96
7.4.3.6 Inc Addr ...97
7.4.3.7 Each Burst Requires A Request ...97
7.4.3.8 Location Name ...98

7.4.4 Example DMA Capability File:...101
7.5 Add/Create .cystate XML File ...102

7.5.1 Adding the .cystate File to a Component ..102
7.5.2 States ..102
7.5.3 State Messaging..103

7.5.3.1 Notice Type ...103
7.5.3.2 Default Message..103

6 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Contents

7.5.4 Best Practices...103
7.5.5 XML Format ..103
7.5.6 Example <project>.cystate File...105

7.6 Add Static Library ...106
7.6.1 Best Practices...107

7.7 Add Dependency..107
7.7.1 Add a User Dependency...107
7.7.2 Add a Default Dependency...109

7.8 Build the project..111

8. Customizing Components (Advanced) 113

8.1 Customizers from Source...113
8.1.1 Protecting Customizer Source .. 113
8.1.2 Development flow ... 113
8.1.3 Add Source File(s) .. 114
8.1.4 Create Sub-Directories in “Custom”.. 114
8.1.5 Add Resource Files .. 115
8.1.6 Name the Class / Customizer ... 115
8.1.7 Specify Assembly References .. 115
8.1.8 Customizer cache ... 115

8.2 Precompiled Component Customizers ...116
8.3 Usage Guidelines ...117

8.3.1 Use Distinct Namespaces... 117
8.3.2 Use Distinct External Dependencies .. 117
8.3.3 Use Common Component To Share Code ... 117

8.4 Customization Examples..117
8.5 Interfaces..117

8.5.1 Clock Query in Customizers ... 118
8.5.1.1 ICyTerminalQuery_v1 ...118
8.5.1.2 ICyClockDataProvider_v1 ...118

8.5.2 Clock API support ... 118

9. Adding Tuning Support (Advanced) 119

9.1 Tuning Framework..119
9.2 Architecture ..120
9.3 Tuning APIs ..120

9.3.1 LaunchTuner API ..120
9.3.2 Communications API (ICyTunerCommAPI_v1) ..120

9.4 Passing Parameters ...121
9.5 Component Tuner DLL...121
9.6 Communication Setup ..121
9.7 Launching the Tuner...121
9.8 Firmware Traffic Cop..122
9.9 Component Modifications...122

9.9.1 Communication Data ..122
9.10 A simple tuner...123

10. Adding Bootloader Support (Advanced) 125

10.1 Firmware...125
10.1.1 Guarding ...125
10.1.2 Functions ..125

10.1.2.1 void CyBtldrCommStart(void)..126

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 7

Contents

10.1.2.2 void CyBtldrCommStop(void) ..126
10.1.2.3 void CyBtldrCommReset(void) ..126
10.1.2.4 cystatus CyBtldrCommWrite(uint8 *data, uint16 size, uint16 *count, uint8 tim-

eOut)126
10.1.2.5 cystatus CyBtldrCommRead(uint8 *data, uint16 size, uint16 *count, uint8 tim-

eOut)127
10.1.3 Customizer Bootloader Interface...127

11. Best Practices 129

11.1 Clocking ..129
11.1.1 UDB Architectural Clocking Considerations..129
11.1.2 Component Clocking Considerations..130
11.1.3 UDB to Chip Resource Clocking Considerations ..130
11.1.4 UDB to Input/Output Clocking Considerations ..130
11.1.5 Metastability in Flip-Flops..130
11.1.6 Clock Domain Boundary Crossing ..131
11.1.7 Long Combinatorial Path Considerations..131
11.1.8 Synchronous Versus Asynchronous Clocks..131
11.1.9 Utilizing cy_psoc3_udb_clock_enable Primitive..132
11.1.10Utilizing cy_psoc3_sync Component ..134
11.1.11Routed, Global and External Clocks ...134
11.1.12Negative Clock Edge Hidden Dangers ...134
11.1.13General Clocking Rules ..134

11.2 Interrupts...135
11.2.1 Status Register..135
11.2.2 Internal Interrupt Generation and Mask Register ..136
11.2.3 Retention Across Sleep Intervals ..136
11.2.4 FIFO Status ...137
11.2.5 Buffer Overflow ...138
11.2.6 Buffer Underflow ...138

11.3 DMA..139
11.3.1 Registers for Data Transfer ...140
11.3.2 Registers for Status...140
11.3.3 Spoke width...141
11.3.4 FIFO Dynamic Control Description ...142
11.3.5 Datapath Condition/Data Generation ..142
11.3.6 UDB Local Bus Configuration Interface ..143
11.3.7 UDB Pair Addressing ..143

11.3.7.1 Working Register Address Space..144
11.3.7.2 8-Bit Working Register Access ..144
11.3.7.3 16-bit Working Register Address Space..145
11.3.7.4 16-bit Working Register Address Limitation ..145

11.3.8 DMA Bus Utilization ..146
11.3.9 DMA Channel Burst Time ...146
11.3.10Component DMA capabilities..147

11.4 Low Power Support ..147
11.4.1 Functional requirements..147
11.4.2 Design Considerations ..147
11.4.3 Firmware / Application Programming Interface Requirements..................................147

11.4.3.1 Data Structure Template ...147
11.4.3.2 Save/Restore Methods ..148
11.4.3.3 Additions to Enable and Stop Functions..149

11.5 Component Encapsulation..149

8 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Contents

11.5.1 Hierarchical Design...149
11.5.2 Parameterization...153
11.5.3 Component Design Considerations ..153

11.5.3.1 Resources ...153
11.5.3.2 Power Management ..154
11.5.3.3 Component Development..154
11.5.3.4 Testing Components ...155

11.6 Verilog ..156
11.6.1 Warp: PSoC Creator Synthesis Tool...156
11.6.2 Synthesizable Coding Guidelines ...156

11.6.2.1 Blocking versus Non-Blocking Assignments ...156
11.6.2.2 Case Statements...157
11.6.2.3 Parameter Handling ..158
11.6.2.4 Latches..160
11.6.2.5 Reset and Set ...160

11.6.3 Optimization..161
11.6.3.1 Designing for Performance..161
11.6.3.2 Designing for Size ...161

11.6.4 Resource choice ...162
11.6.4.1 Datapath..163
11.6.4.2 PLD Logic..164

A. Expression Evaluator 165

A.1 Evaluation Contexts..165
A.2 Data Types ...165

A.2.1 Bool...165
A.2.2 Error..165
A.2.3 Float..166
A.2.4 Integers...166
A.2.5 String...166

A.3 Data Type Conversion..167
A.3.1 Bool...167
A.3.2 Error..167
A.3.3 Float..167
A.3.4 Int..167
A.3.5 String...168

A.3.5.1 Bool-ish string..168
A.3.5.2 Float-ish strings...168
A.3.5.3 Int-ish strings ...168
A.3.5.4 Other strings..168

A.4 Operators..169
A.4.1 Arithmetic Operators (+, -, *, /, %, unary +, unary -) ...169
A.4.2 Numeric Compare Operators (==, !=, <, >, <=, >=) ..169
A.4.3 String Compare Operators (eq, ne, lt, gt, le, ge)...169
A.4.4 String Concatenation Operator (.) ...169
A.4.5 Ternary Operator (?:) ..170
A.4.6 Casts...170

A.5 String interpolation..170
A.6 User-Defined Data Types (Enumerations) ...170

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 9

1. Introduction

This guide provides instructions and information that will help you create Components for PSoC
Creator. Some of this guide is intended for advanced users to create sophisticated Components that
other users employ to interact with PSoC Creator. However, there are some basic principles in this
guide that will also benefit novice users who may wish to create their own Components.

This chapter includes:

 What is a PSoC Creator Component?

 Component Interaction

 Component Creation Process Overview

 Cypress Component Requirements

 Component Parameter Overview

 References

 Conventions Used in the Guide

 Revision History

1.1 What is a PSoC Creator Component?

A PSoC Creator Component is a collection of files, such as a symbol, schematic, APIs, and
documentation that defines functionality within the PSoC Device. Examples of Components include
a timer, counter, and a mux. The following shows the various elements of a Component.

10 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

The most common files that make up a Component include the following:

 Symbol – A symbol contains the basic definition of a Component. It contains the top-level picture
shown in the PSoC Creator Component Catalog, as well as the parameter definitions. There can
be only one symbol in a Component.

 Optional hardware implementation – This is typically either a schematic or a Verilog file or a
UDB editor file. Some Components have a <project>.cyprimitive file -- this is just a sentinel that
says the backend tools inherently know about it and there is no explicit implementation.

 Schematic – A schematic defines how a Component has been implemented visually. A
schematic can be generic for any PSoC device, or it can be specific to a Family, Series and/or
Device.

 Verilog – Verilog can be used to define the functionality of a Component implemented in
Verilog. There will only be one Verilog file in any given level of a Component. Verilog files
found at different levels of the Component, such as at a Family, Series and/or Device, may not
refer to each other.

 Optional firmware – This is typically made of a C header, source files, or static libraries.
Assembly is also supported, but rarely used. The C header and source files are templates. They
can't be compiled directly by C compiler. They get processed by PSoC Creator and turned into
the generated source you see when building a design.

 API – Application Programming Interface. APIs define how to interact with a Component using C
code. They can be generic for any PSoC device, or they can be specific to a Family, Series and/
or Device.

 Optional C# customizer (.cs and .resx files) – There is help documentation available from the
Help menu that details the APIs the tool exposes to Components. It's effectively a plug-in
interface that lets Components customize certain default behaviors of the tool (like appearance,
how it netlists to Verilog, generating APIs on-the-fly, etc.).

 Control File – The control file contains directives to the code generation module. For information
on how to add a control file, see Add Control File on page 82. For more information about control
files in general, refer to the Control File and Directives topics in the PSoC Creator Help.

 Documentation – The documentation of the Component is generally its datasheet.

1.2 Component Interaction

The following shows how the different pieces of a Component interact with one another.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 11

Introduction

1.3 Component Creation Process Overview

The process to create Components includes the following high-level steps. See references to
various chapters in this guide for more information.

 Create the library project (Chapter 2)

 Create a Component/symbol (Chapter 2)

 Define symbol information (Chapter 3)

 Create the implementation (Chapter 4)

 Simulate the hardware (Chapter 5)

 Create API files (Chapter 6)

 Customize the Component (Chapter 8)

 Add tuning support (advanced) (Chapter 9)

 Add bootloader support (as needed) (Chapter 10)

 Add/create documentation and other files/documents (Chapter 7)

 Build and test the Component (Chapter 7)

Note These chapters provide a logical grouping of related information and they present one, but not
the only, possible workflow process for creating Components. Refer also to Chapter 11 for various
best practices to follow when creating Components.

1.4 Cypress Component Requirements

All Component development should occur from inside PSoC Creator itself; however, you may need
to use additional tools, such as the Datapath Configuration Tool (under the PSoC Creator Tools
menu). All code and schematic editing, symbol creation, interface definition, documentation
authoring, etc., should occur within a given Component.

 All Components produced by Cypress must have a change log. Add this to the Component as a
separate Component item just like the datasheet. This log file should be a simple text file. The
datasheet must contain a “Change” section for each new version of the Component.

 Make sure that the Component version is added to the Component name. Also, do not include
the version information in the display name (catalog placement), as the tool will add this for you.

1.4.1 File Names

Component file names (including any version number) must be compatible with C, UNIX, and
Verilog, which are all are case sensitive.

1.4.2 Name Considerations

When creating a Component, its name will be the same name used for all elements of that
Component, except schematic macros, customizer source files and API source files; therefore, it is
important to choose the name appropriately.

1.4.3 File Name Length Limitations

Component names should be no longer than 40 characters, and resource file names should be no
longer than 20 characters. Longer file names create problems with the length of path names when
the Component is expanded in end-user designs.

12 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

1.4.4 Component Versioning

Cypress follows the following Component version policy, which is documented more fully by an
internal specification. The following are recommendations for external customers developing their
own Components.

PSoC Creator supports Component versioning and patching. A version of the Component (major
and minor) is fully self-contained. Patching may be used rarely and only when it does not change
any actual content (perhaps just a document change).

 Major version: major changes (e.g. API changes, Component symbol interface changes,
functionality changes etc.) that may break the compatibility

 Minor version: No API changes. Bug fixes, additional features that do not break the compatibility

 Patch: No API changes. Documentation, bug fixes to the existing functionality of the Component
that do not break the compatibility. Note that since patches are an aspect of the Component,
when the user installs an updated Component, they automatically get these changes.

The version number will be carried as part of the Component name by appending
"_v<major_num>_<minor_num>" to the Component name, where <major_num> and <minor_num>
are integers that specify the major and minor versions respectively. For example,
CyCounter8_v1_20 is version 1.20 of the CyCounter8 Component. Major and minor numbers are
each integers on their own and do not make up a "real number." For example, v1_1 is not the same
as v1_10 and v1_2 comes before v1_10.

The patch level will be an aspect of the Component (carried on the symbol) and hence is not
reflected in the Component name. Incorporating the version number as part of the Component name
will protect existing designs when there is a major change in the Component. Note that it is under the
control of the Component author to name the major and minor versions.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 13

Introduction

1.5 Component Parameter Overview

Parameters in PSoC Creator are a set of one or more named expressions that define the behavior of
a Component. You define parameters for a symbol using the Parameters Definition dialog.

A parameter consists of a Name, Type, Value, and an associated list of properties.

 The name can be almost whatever you want, as long as it is a legal identifier name. Also, the
prefix "CY_" is reserved for built-in parameters (see Built-In Parameters on page 15). New
parameter names cannot start with the string "CY_" or any case variation.

 The type is a pull-down menu listing all the data types available. For a description of the data
types, refer to Data Types on page 165.

 The value is the default value for the instantiated Component. The default parameter value only
defines the value used when a Component is first instantiated. The value is a snapshot at that
time. If the default value for the Component is subsequently changed, that value does not get
propagated down to any previously instantiated Component.

 The various properties for each parameter control how the parameter displays and behaves. See
Define Symbol Parameters on page 31 for more information about these properties.

1.5.1 Formal versus Local Parameters

Symbols have two kinds of parameter definitions: formals and locals. Both can be displayed in the
instance Configure dialog, but there are some key differences between them. Formals are normally
visible and editable. They can be temporarily hidden and/or made read only. Locals are normally
hidden, and are always read only. They can be made visible to show useful derived information (e.g.,
like a baud rate).

 Formal – These are how users configure a Component. They are inputs to the Component from
the user. They serve the same purpose as arguments to a C function.

 Local – These are additional information required by the Component. They are calculated from
formals. They serve the same purpose as stack variables in a C function.

14 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

In a symbol, formal parameters have constant default values and local parameters may have
expressions with identifiers that refer to other parameters. The identifiers in the local parameter
expressions come from the combined set of formal and local parameters. In effect, the parameter set
is an evaluation context (for the local parameters).

Schematic documents have a parameter set. When open in the editor, the schematic has a
parameter set that is a direct copy of its symbol parameter set. This copy is made at run time and is
guaranteed to always stay in sync with the symbol. These parameters are not directly visible in
PSoC Creator, except by editing the symbol. If a schematic does not have a symbol, then it does not
have a parameter set.

An instance of a Component holds formal parameters from the Component’s symbol. The instance
creates a copy of its formal symbol parameters when it is dropped in a schematic. Users can change
the values of the formal parameters to expressions. Formal parameters on an instance may refer to
any parameters that exist on the schematic on which it was dropped. Formal parameters on an
instance may not refer to any of its other parameters. Formal parameters are the means by which
the user’s configuration values get propagated through the design hierarchy by Component
developers.

End users cannot change values of local parameters. The instance local parameters are evaluated
in the context of the instance. That means they can refer to any other parameter on the instance, but
may not refer to any parameters from the schematic on which it was dropped. See the Expression
Evaluator appendix on page 165 for more information on evaluation contexts and their use.

Instance parameters match-by-name with symbol parameters; type does not matter. An in-memory
instance has both an active parameter set and an orphan parameter. The active set are those
parameters contained in the symbol's parameter set. The orphan set are those parameters that had
been created for the instance, but the symbol changed, and those parameters are no longer valid
parameters. For example, this allows end users to change their library search path, switch to an
alternate implementation or version of a Component, and switch back to their original search path
without losing any data.

Orphan parameters are transient. Orphan parameters will become active if the associated symbol is
refreshed and now has formal parameters of those names. The elaborated schematic parameters
are just a direct copy of the instance parameters from the parent instance.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 15

Introduction

1.5.2 Built-In Parameters

Built-In parameters are defined for each symbol by default. Built-in parameter definitions cannot be
removed from the parameter definition editor. The names and the types of built-ins cannot be
changed. Currently, PSoC Creator includes the following built-in parameters:

1.5.2.1 Formals:

Name Description

INSTANCE_NAME

This is a special parameter. In the editor, it has the short name for the instance.
This is what the user edits when they want to rename an instance. In the
elaborated design, it provides access to the "full" or "hierarchical" instance
name. This is the name that should be used (via `$INSTANCE_NAME`) in API
files to ensure that there aren't any collisions). In other words, this name is
nearly always the one Component authors should refer to, and it will have an
appropriate value.

Note The INSTANCE_NAME parameter returns a different value when used in
the expression evaluator versus API and HDL generation. For the expression
evaluator, it returns the leaf name of the instance; when used for API and HDL
generation, it returns the path name of the instance.

CY_CONST_CONFIG

(Config Data in Flash)

Controls whether the configuration structure is stored in flash (const, true) or
SRAM (not const, false). Only visible for devices that support driver style APIs
(for example, FMx).

CY_REMOVE

(Disable)

This parameter is a flag to the elaborator, which tells it to remove the instance
from the netlist. It works in conjunction with the live mux to allow Component
authors to dynamically switch between two different implementations of a
Component in a single schematic. The default value is false (that is, keep the
instance around).

CY_SUPPRESS_API_GEN

(Suppress API Generation)

This parameter can be used to indicate that a particular instance should not
have an API generated for it (even though the Component has an API). The
default value is false.

CY_COMMENT

(User Comments)

Instance-specific comments. Component authors should include the comment
in generated source (.c file) as follows:

/*

`$CY_COMMENT`

*/

16 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

1.5.2.2 Locals:

Name Description

CY_API_CALLBACK_HEADER_INCLUDE

This parameter is used during the build process to check for the
existence of the cyapicallbacks.h file on disk in the project
directory.

 If the file exists, this parameter will expand to #include
"cyapicallbacks.h".

 If the file does not exist, this parameter expands to an empty
string.

CY_COMPONENT_NAME

This parameter contains the file system path to the
Component's base directory (the directory where the symbol
exists). It is only valid after elaboration. Before elaboration this
parameter contains the value " UNELABORATED ".

CY_CONTROL_FILE

This parameter is used to specify a control file for the
Component instance. This is used internally to define fixed
placement characteristics for specific Components. The default
value (<:default:>) refers to the control file at the generic level
(that is,

<ComponentName>.ctl), if one is used. This value should not
be changed.

For information about how to create and use a control file in a
design, refer to the “Control File” topic in the PSoC Creator
Help. See also Add Control File on page 80.

CY_DATASHEET_FILE

This parameter is used to specify all documentation files for the
Component instance. This includes the datasheet and all
supporting documents for a Component. The default value
(<:default:>) refers to the datasheet file (that is,
<ComponentName>.pdf). If there are multiple files associated
with the Component, a list of documents can also be provided
using a semicolon separated string of filenames. For example:

<ComponentName>.pdf;document1.pdf;document2.html

Note The first document in the string ALWAYS must be the
datasheet. The file system paths for all documents are relative
to the Component’s base directory.

CY_FITTER_NAME Hierarchical name in fitter format.

CY__INSTANCE_SHORT_NAME

If for some reason a Component author needs the short form of
the instance name even in the elaborated design, it can be
accessed via this parameter. End- users should NEVER see
this. It isn't editable. Its value is automatically updated whenever
the user modifies the INSTANCE_NAME parameter.

CY_PDL_DRIVER_NAME
Name of the PDL driver that this Component generates code
(e.g., initialization structures) for.

CY_PDL_DRIVER_REQ_VERSION

Required version of the driver this Component is compatible
with in the form Major.Minor.Patch. Major version number must
be an exact match for the PDL driver. Minor and Patch are
minimum versions within a major version.

CY_PDL_DRIVER_SUBGROUP
Optional subgroup of the driver name. Corresponds to Pack
cSub.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 17

Introduction

CY_PDL_DRIVER_VARIANT
Optional special variant of the driver name. Corresponds to
Pack cVariant

CY_VERSION
This parameter displays version and build information for PSoC
Creator.

CY_MAJOR_VERSION

(Component Major Version)

This parameter contains the major version number for the
instance.

CY_MINOR_VERSION

(Component Minor Version)
This parameter contains the minor version number for the
instance.

Name Description

18 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

1.5.3 Expression Functions

Anyone can access the following functions by using them in an expression.

You can make an expression that contains a function call. In order to use one of the functions in a
text label, use the format `=IsError()` for example. If you want to set a parameter value to the
result of one of these functions then just set the value to the function. Similarly, these functions can
be used in a validator expression. See also Add Parameter Validators on page 35.

1.5.3.1 Device Information Functions

These functions may not have data in all situations. For example, when editing a schematic inside a Component
in a library project there is no selected device available.

Function Name Description

GetDeviceFamilyName
GetDeviceFamilyName() : string
Get the family name of the selected device, such as PSoC 3, PSoC 4,
PSoC 5, FM0p.

GetDeviceSeriesName
GetDeviceSeriesName() : string
Gets the name of the series of the selected device. E.g., CY8C588, PSOC3/
PSoC 4/FM.

GetDeviceInternalName
GetDeviceInternalName() : string
Gets the internal name of the selected device (e.g., PSoC3A, PSoC5LP,
etc.).

GetDevicePartNumber
GetDevicePartNumber() : string
Gets the part number of the selected device.

GetDevicePackageName
GetDevicePackageName() : string
Gets the package name of the selected device.

GetFeatureCount

GetFeatureCount(nameOfHardwareFeature) : int
Get the number of instances of a named hardware feature. Available
hardware features names includes:

PSoC 3/PSoC 5 devices: P3_ANAIF, P3_CAPSENSE, P3_CAN, P3_COMP,
P3_DECIMATOR, P3_DFB, P3_DMA, P3_EMIF, P3_DSM, P3_I2C,
P3_LCD, P3_LPF, P3_OPAMP, P3_PM, P3_SCCT, P3_TIMER, P3_USB,
P3_VIDAC, P3_VREF.

PSoC 4 devices: m0s8bless, m0s8can, m0s8peri, m0s8cpuss,
m0s8cpussv2, m0s8cpussv3, m0s8csd, m0s8csdv2, m0s8ioss, m0s8iossv2,
m0s8lcd, m0s8lpcomp, m0s8scb, m0s8srss, m0s8srssv2, s8srsslt, s8srsslta,
m0s8tcpwm, s8pass4al, m0s8pass4a, m0s8pass4b, m0s8sar, m0s8smif,
m0s8ssc, m0s8tss, m0s8udbif, m0s8udb, m0s8usbdss, m0s8usbpd,
m0s8wco, m0s8crypto.

Example:

GetFeatureCount(“P3_DFB”) – returns the number of digital filter blocks.

GetFeatureCountDie
GetFeatureCountDie(nameOfHardwareFeature) : int
Get the number of instances of a hardware feature, ignoring wounded
features. Available hardware features is identical to GetFeatureCount().

GetFeatureParameter

GetFeatureParameter(nameOfHardwareFeature,
nameOfParameter) : int
Gets the integer value of a parameter of a named hardware feature. Available
hardware feature names is identical to GetFeatureParameter(). For a list of
available parameters, please contact Cypress.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 19

Introduction

GetFeatureParameterDie

GetFeatureParameter(nameOfHardwareFeature,
nameOfParameter) : int
Gets the integer value of a parameter of a named hardware feature, ignoring
wounded features. Available hardware feature names and parameter names
are identical to GetFeatureParameter().

GetFeatureVersion
GetFeatureVersion(nameOfHardwareFeature) : int
Get the version of a named hardware feature. Available hardware feature
names is identical to GetFeatureParameter().

GetJtagId
GetJtagId() : int
Gets the JTAG id of the selected device.

GetResourceCount

GetResourceCount(namedResource) : int
Get the number of instances of the named resource.

Available resource names include: CSIDAC7, CSIDAC8, P4CSDCOMP,
CAPSENSECSD, CAPSENSEGESTURE, and CAPSENSEADC.

GetSiliconRevision
GetSiliconRevision() : int
Gets the revision of the selected device.

UsesDriverStyleApis
UsesDriverStyleApis() : bool
Returns true if the selected device uses driver-style APIs.

1.5.3.2 Component Information Functions

These functions are used for Components.

Function Name Description

GetComponentName
GetComponentName() : string
Returns the name of the Component.

GetMajorVersion
GetMajorVersion() : int
Returns the major version number of the Component.

GetMinorVersion
GetMinorVersion() : int
Returns the minor version of the Component.

GetNameForEnum
GetNameForEnum(enumTypeName, integralValue) : string
Gets enum identifier name the given integer value for the named enum type.
Enums are created via the parameter dialog in the symbol editor.

GetStateForDisplay

GetStateForDisplay() : string
Returns a string from Components’s cystate file. The return value can be an
empty string, “Prototype,” “Obsolete,” “Incompatible.” An empty string
indicates the Component is in the production state, there is no state file, there
is a bad entry in the file, or has no entry for the target silicon.

1.5.3.1 Device Information Functions (continued)

These functions may not have data in all situations. For example, when editing a schematic inside a Component
in a library project there is no selected device available.

Function Name Description

20 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

1.5.3.3 Misc. / Utility Functions

These are miscellaneous/utility functions, used as described.

Function Name Description

GetApiCallbackHeaderInclude

GetApiCallbackHeaderInclude() : string
Returns the string #include “cyapicallbacks.h” if the customers design
project has a cyapicallbacks.h header file. Returns the empty string if it
does not exist. This is useful for Components implementing API callbacks
and want to be backwards compatible with earlier version of PSoC Creator
that do not generate this header by default.

For example, place the following code in a Component firmware API
template rather that directly including cyapicallbacks.h:

`=GetApiCallbackHeaderInclude()`

GetMarketingNameWithVersion
GetMarketingNameWithVersion() : string
Gets the application's full name and version (e.g., "PSoC Creator 3.0").

GetErrorText
GetErrorText()
Returns the error message stored in a value of the error type.

InvalidFileNameErrorMsg

InvalidFileNameErrorMsg(nameToCheck, ...) : string
Returns a string with an error message indicating why the give name(s)
are invalid.

See Also: IsValidFileName().

IsAssignableName

IsAssignableName(nameToCheck) : bool
Returns true if the given name is legal for the INSTANCE_NAME
parameter. This is typically used to validate user input when renaming a
Component instance. Valid instance names:

 Cannot be a C, C++, VHDL, or Verilog keyword.

 Must start with a letter.

 May contain letters, digits, and underscore (_).

 May not contain 2 or more consecutive underscores (_).

IsError
IsError(parameterToCheck) : bool
If the type of the argument is the error type, return true; else, return false.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 21

Introduction

IsValidCCppIdentifierName
IsValidCCppIndentiferName(nameToCheck)
Returns true if the given string is a legal C and C++ identifier name,
otherwise it returns false.

IsValidCCppIdentifierWithError

IsValidCCppIndentiferWithError(nameToCheck)
Returns true if the given string is a legal C and C++ identifier name.
Returns a value of the error type with appropriate message if the identifier
is not a legal C or C++ identifier.

IsValidFileName

IsValidFileName(nameToCheck, ...)
Takes 1 or more arguments. Each argument is a ; delimited list of file
names. Returns true if all file names are valid. Valid file names:

 Are not the empty string.

 Do not start with a whitespace character.

 Do not end with a . or whitespace.

 Are not reserved or restricted by the underlying operating system
file system. Windows-based file systems typically forbid ASCII/
Unicode characters 1 through 31, as well as double quote ("),
less-than (<), greater-than (>), pipe (|), backspace, null, and tab
(\t), colon (:), backslash (\), and forward slash (/).

 Are not reserved by the operating system. Windows systems
reserve the names CON, PRN, AUX, NUL, COM1 – COM9, and
LPT1 – LPT9.

See Also: InvalidFileNameErrorMsg().

UnAssignableNameErrorMsg

UnAssignableNameErrorMsg(instanceName)
Returns an string with an error message for the given potential value of
the INSTANCE_NAME parameter.

See Also: IsAssignableName().

1.5.3.4 Deprecated Functions

These are deprecated functions that are kept for backward compatibility purposes.

Function Name Description

GetArchitecture Not recommended for use. Replaced by GetDeviceFamilyName().

GetArchMemberName Not recommended for use. Replaced by GetDeviceInternalName().

GetArchMemberName2 Not recommended for use. Replaced by GetDeviceInternalName().

GetDeviceFamily Not recommended for use. Replaced by GetDeviceSeriesName().

GetDeviceFamily2 Not recommended for use. Replaced by GetDeviceSeriesName().

GetPartNumber Not recommended for use. Replaced by GetDevicePartNumber().

GetPackageName Not recommended for use. Replaced by GetDevicePackageName().

GetHierInstanceName Not recommended for use. Use the $INSTANCE_NAME parameter.

GetShortInstanceName
Not recommended for use. Use the $CY_INSTANCE_SHORT_NAME
parameter.

IsInSystemBuilder Not recommended for use.

1.5.3.3 Misc. / Utility Functions (continued)

These are miscellaneous/utility functions, used as described.

Function Name Description

22 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

1.5.4 User-Defined Types

User-defined types (or enumeration types) are used to define parameters for symbols whose value
comes from the enumeration. User-defined types can be “inherited.” For example, you can create a
UDB implementation of the counter that is the Verilog implementation and a symbol. This symbol is
placed in a top-level schematic with another symbol for the fixed function block. You could re-define
all of the enumerated types and open up error possibilities or the top-level Component can use
(inherit) the enumerated types from the lower level Component. See Define Symbol Parameters on
page 31 and Add User-Defined Types on page 36.

1.6 References

This guide is one of a set of documents pertaining to PSoC Creator Component creation. Refer to
the following as needed:

 PSoC Creator Help (Library Component Project and Basic Hierarchical Design topics, as well as
the Symbol Editor topics)

 Cypress.com

 KBA86338, Creating a Verilog-based Component

 PSoC Creator Tutorial: Component Creation - Creating a Symbol

 PSoC Creator Tutorial: Component Creation - Implementing with Verilog

 Cypress Community Component Forum

 PSoC Creator Universal Digital Block (UDB) Editor Guide

 PSoC Creator Customization API Reference Guide

 PSoC Creator Tuner API Reference Guide

 PSoC Creator System Reference Guide

 Device-specific Technical Reference Manual (TRM)

 Warp™ Verilog Reference Guide

1.7 Conventions Used in this Guide

The following table lists the conventions used throughout this guide:

Convention Usage

Courier New
Displays file locations and source code:

C:\ …cd\icc\, user entered text

Italics
Displays file names and reference documentation:

sourcefile.hex

[bracketed, bold]
Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

File > New Project
Represents menu paths:

File > New Project > Clone

Bold
Displays commands, menu paths and selections, and icon names in procedures:

Click the Debugger icon, and then click Next.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 23

Introduction

1.8 Revision History
Document Title: PSoC® Creator™ Component Author Guide

Document # 001-42697

Revision Date Description of Change

** 12/4/07 New document.

*A 1/30/08 Updates to all sections.

*B 9/23/08
Updates to all sections.

Document name change to Component Author Guide.

*C 5/27/09

Product name change to PSoC Creator.

Updates to all sections to remove TBDs and TODOs.

Updated the customization section with current APIs.

*D 12/1/09

Updated versioning section.

Added section for adding Schematic Macros.

Added section for creating debug XML files.

*E 4/28/10 Changed copyright year to 2010.

*F 9/12/10

Added UDB Clock primitive.

Added section for precompiled customizers.

Updated Versioning section.

Added Tuning chapter.

Updated Datapath Configuration Tool; moved to Appendix B.

Added Best Practices chapter.

*G 11/1/10

Added Bootloader chapter.

Updated Verilog section in the Implementation chapter.

Added section for adding/creating compatibility file.

*H 6/21/11

Added Verilog example code.

Updated references to registers.

Added information for Annotation Component.

Added information about the exclude file.

Updated Add Component Item dialog.

Updated the API section to clarify what to include.

Updated cystate file section.

Updated the Simulation chapter.

Added information about the cyversion file.

Updated the Control register description.

Updated customizer interfaces.

Updated built-in parameters and expression functions.

Added symbol property Doc.URL.

*I 9/13/12

Updated text for Control file and added reference to PSoC Creator Help.

Updated #defines to incorporate PSoC 5LP.

Fixed a few typos.

*J 12/4/12

Updated external Component.

Fixed cy_ctrl_mode reference errors.

Added Tools menu to Datapath Configuration Tool.

24 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Introduction

*K 3/19/13

Updated the Expression Functions section.

Added note about adding only one Tuner DLL and DMA Capability file.

Updated the Verilog UDB Array section for PSoC 4.

*L 8/7/13

Added note for when an input terminal is not visible.

Updated the description of GetArchMemberName().

Added section for UDB Editor, and updated the Implementation chapter.

Added section for adding DMA Capability File.

*M 2/11/14
Added Visibility Expression field to Symbol properties.

Added Expression Functions to support new devices.

*N 8/19/14

Added Library Support for Components.

Updated UDB Editor Datapath and State Machine descriptions.

Added instructions for adding static libraries.

Updated Debug XML file section.

Added a section for Dependencies in Finishing the Component chapter.

*O 5/7/15

Revised Chapters 1 – 3 and rearranged other chapters to improve document flow.

Removed UDB Editor information to refer to the UDB Editor Guide
(spec # 001-94131).

Added “Advanced” to Customizing, Tuning, and Bootloader chapters.

Moved the Datapath Configuration Tool appendix to a separate document
(spec # 001-96549).

*P 8/25/15

Updated Local Built-In Parameters section.

Add Macro Callbacks section.

Updated Tuning Support to include SPI or UART.

Fixed broken references to Datapath Configuration Tool.

Updated New Project wizard.

Updated Best Practices Clocking section.

*Q 1/11/16 Minor document edit.

*R 2/11/16 Minor document edit.

*S 8/30/16

Updated New Project screen capture.

Added a note about editing the .cystate file.

Updated Add Component Item screen captures and descriptions.

Updated Symbol Parameters and Expression Functions.

Added section for adding custom context menu items.

Updated Debug XML File attribute.

Fixed incorrect reference for information about control files.

*T 3/30/17

Updated copyright and logo.

Updated Component requirements section.

Updated Defining Symbol Information chapter to reflect GUI updates.

Updated Macro Callbacks section.

Minor edits throughout.

Document Title: PSoC® Creator™ Component Author Guide

Document # 001-42697

Revision Date Description of Change

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 25

2. Creating Projects and Components

This chapter covers the basic steps to create a library project and add symbols using PSoC Creator.

2.1 Create a Library Project

You can create one or more Components in either a design project or a library project. The main
difference is that a design project is usually geared toward a specific device and a specific design
goal, while a library project is just a collection of Components. Refer to the PSoC Creator Help for
more information.

To use the Components, add the project in which they are contained as a dependency in PSoC
Creator. See Add Dependency on page 107 for more information.

To create a library project:

1. Click File > New > Project to open the New Project wizard.

2. Select the Library project type and click Next >.

26 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Creating Projects and Components

3. Select one or more processors for which the library project will be built.

Note You cannot select the DP8051 processor and any of the Cortex processors, because they
are not compatible. An error will display.

4. If a workspace is already open, select Add to current workspace or Create new workspace.
Also, as desired, enter a Workspace Name and Project Name, and click the ellipsis (...) button
to specify the Location to store the project.

5. Click Finish.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 27

Creating Projects and Components

The project displays in the Workspace Explorer under the Source tab.

2.2 Add a Component Item (Symbol)

The first step in the process of creating a Component is to add one of several types of Component
items to your project, such as a symbol, schematic, or Verilog file. When you add a Component item,
you also create a Component indirectly. The process used to add any of these Component items is
the same; however, each of the Component items requires a different set of steps to complete.

This section will focus on creating a symbol as the first Component item. There are two methods to
create a symbol: an empty symbol and the symbol wizard.

Note You may also auto-generate a symbol from a schematic or Verilog, but this section will not
cover that process. Refer instead to the PSoC Creator Help for instructions.

2.2.1 Create an Empty Symbol

This section describes the process to create an empty symbol and add shapes and terminals. (See
Create a Symbol using the Wizard on page 29 for an alternate method of creating a symbol.)

1. As needed, open the appropriate PSoC Creator Library project.

2. Click on the Components tab of the Workspace Explorer.

28 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Creating Projects and Components

3. Right-click on the project and select Add Component Item...

The Add Component Item dialog displays.

4. Select the Empty Symbol icon.

5. Enter the Component name, including version information.

Note The symbol and all Component elements except schematic macros, customizer source
files, and API source files will inherit this Component name. See Name Considerations on
page 11 and Component Versioning on page 12.

Also, there can be only one symbol file in the Component, and that symbol is always generic.
Thus, the Target options are disabled.

6. Click Create New to allow PSoC Creator to create a new symbol file.

Note You can also select Add Existing from the pull-down menu to select an existing symbol file
to add to the Component.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 29

Creating Projects and Components

The symbol displays in the Workspace Explorer tree, with a symbol file (.cysym) listed as the only
node.

The Symbol Editor also opens the <project_name>.cysym file, and you can draw or import a pic-
ture that represents the Component.

7. Draw basic shapes and terminals to define the symbol using the Symbol Editor. Refer to the
PSoC Creator Help for more information.

Note The plus sign (or cross-hairs) in the middle of the Symbol Editor canvas depicts the origin of
your symbol drawing.

8. Click File > Save All to save changes to your project and symbol file.

2.2.2 Create a Symbol using the Wizard

The Add Component Item dialog contains a Symbol Wizard icon in addition to the Empty Symbol
icon. The benefit of using this wizard template is that PSoC Creator will create the basic symbol
drawing and terminals for you.

1. Follow the instructions for creating a Component as described in Create an Empty Symbol on
page 27.

2. Instead of choosing the Empty Symbol icon described in Step 4 on 28, choose the Symbol
Wizard icon.

30 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Creating Projects and Components

After clicking Create New on the Add Component Item dialog, the Symbol Creation Wizard
displays.

3. Under Add New Terminals, enter the Name, and Type for the terminals you wish to place on the
symbol.

The Symbol Preview section will show a preview of how your symbol will appear on the Symbol
Editor canvas.

4. Use the Delete, Up, and Down buttons to move and delete terminals, as needed.

5. Optionally, choose a Title color and specify a Symbol label.

6. Click OK to close the Symbol Creation Wizard.

As with creating an empty symbol, the new Component displays in the Workspace Explorer tree,
with a symbol file (.cysym) listed as the only node. However, your Symbol Editor will display the
symbol created by the wizard, and it will be centered on the cross-hairs.

7. Make changes to your symbol drawing, as needed.

8. Click File > Save All to save changes to your project and symbol file.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 31

3. Defining Symbol Information

This chapter covers the process to define various symbol information, such as parameters,
validators, and properties. For detailed information about symbol parameters, refer to Component
Parameter Overview on page 13.

3.1 Define Symbol Parameters

To define parameters for a symbol:

1. Make the symbol file active by clicking the Symbol Editor canvas or the symbol file tab.

2. Right-click on the canvas and select Symbol Parameters... to open the Parameters
Definition dialog.

32 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

3. To create one or more parameters for each symbol, click the Add button to open the Create
Parameter Definition dialog.

On this dialog, set the following basic parameter information.

 Param name – This is the name of the parameter.

 Param type – Parameters on a symbol can either be Formal or Local. Both can be displayed
in the instance Configure dialog, but there are some key differences between them. See
Formal versus Local Parameters on page 13 for more information.

– Formal – These are how users configure a Component. They are inputs to the
Component from the user. They serve the same purpose as arguments to a C function.
Formals are normally visible and editable. They can be temporarily hidden and/or made
read only.

– Local – These are additional information required by the Component. They are
calculated from formals. They serve the same purpose as stack variables in a C function.
Locals are normally hidden, and are always read only. They can be made visible to show
useful derived information (e.g., like a baud rate).

 Expr type – This is the expression type. Select the appropriate type from the pull-down menu.

 Tab name – This is the name of the tab where the parameter will be located. Select a name
from the pull-down menu, if available, or type a name for a new tab.

 Category – This is the category name under which this symbol displays in the Parameter
Editor dialog. This is a way to group parameters together.

When finished entering this information, click OK to close the Create Parameter Definition dialog.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 33

Defining Symbol Information

4. Back on the Parameters Definition dialog, type a default Value for the parameter. If needed, click

on the Expression Editor button to open the Expression Editor to type more complicated
expressions.

Note The default parameter value only defines the value used when a Component is first
instantiated. The value is a snapshot at that time. If the default value for the Component is
subsequently changed, that value does not get propagated down to any previously instantiated
Component.

5. On the right side of the Parameters Definition dialog, define the following properties:

 Category – This is the same as on the Create Parameter Definition dialog from Step 3. You
can change the category here, if needed.

 Description – The description that displays to the end-user for this parameter in the instance
Configure dialog.

 Display Name – The name to display for the parameter in the instance Configure dialog and
the instance tooltip. If not set, the parameter name will be used instead. This name should use
title-style capitalization. Use it to display a user-friendly name (instead of a legal identifier
name) to the user.

 Display On Hover – An expression that specifies if the parameter value displays while
hovering the mouse over the instance in the Schematic Editor.

 Read Only – An expression that specifies whether or not the parameter can be changed by
the end user.

– This will always be true for Locals.

– If a parameter is visible and there is nothing the user can do to make the value editable, a
Local should be used instead of a Formal.

– Only display (set Visible to true) a Formal if the user is expected to edit the value at some
point.

 Scope – Specifies the scope in which the parameter is accessible (Formal or Local).

 Sort Index – Overrides the default alphabetical ordering of the parameters. This will also
control the tab and category ordering. The tab/category containing the smallest sort index will

34 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

be presented first. Any parameter without a sort index specified will be sorted alphabetically
within their category after all parameters that do have an index provided.

 Tab – Specifies the tab under which the parameter should be displayed on in the instance
Configure dialog.

 Visible – An expression that specifies if the parameter should be visible in the instance
Configure dialog.

 Hardware – If true, the parameter is included in the Verilog netlist generated during the
netlisting phase of the build process.

 Check Range – When true, this will check that the parameter’s value after each evaluation is
in the range for the associated type. If out of range, PSoC Creator generates an expression
evaluation error. Valid ranges are as follows:

 Validators – One or more validation expressions for the parameter. See Add Parameter
Validators on page 35 for how to use this field; see Expression Evaluator appendix on
page 165 for more information about CyExpressions.

6. When you are finished adding parameters, click OK to close the Parameters Definition dialog.

Note You can copy one or more parameter definitions by using the Copy/Paste buttons from the
toolbar. Also, multiple parameter properties can be changed at once by having multiple
parameters selected when changing the property.

Type Valid Range

Enumerated Type Any of the integer values that the enumerated type defines

Signed 16-bit Integer Type -32768 .. x .. 32767

Unsigned 16-bit Integer Type 0 .. x .. 65535

Signed 8-bit Integer Type -128 .. x .. 127

Unsigned 8-bit Integer Type 0 .. x .. 255

Boolean Type true and false

All Other Types All values are valid

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 35

Defining Symbol Information

3.2 Add Parameter Validators

Parameter validation expressions are evaluated in the context of the instance. The validation
expressions can refer to both formal and local parameters. They can be used to generate either
errors, warnings, and/or infos. Only errors will stop a user from committing changes in the instance
Configure dialog. When multiple validators fail for a single parameter, only the highest priority type
messages will be displayed: Errors, then Warnings, then Information.

To add a parameter validator:

1. On the Parameters Definition dialog, click in the Validators field and then click the ellipsis button.

The Parameter Validators dialog displays.

2. In the Type file, select Error, Warning, or Info as the expression type.

3. In the Expression field, type in the validation check expression. You can reference parameter
names using the $ symbol. For example:

$param1 > 1 && $param < 16
($param1 == 8) || ($param1 == 16) || ($param1 == 24)

See Expression Evaluator appendix on page 165 for more information.

4. In the Message field, type in the message to display if the validation check is not met.

5. To add another validator, click in any field for an empty row marked with >*, and type in the fields
as appropriate.

6. To delete an expression, click the > symbol in the first column of the row to delete, and press the
[Delete] key.

7. To close the dialog, click OK.

36 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

3.3 Add User-Defined Types

To create a user-defined type:

1. Click the Types... button at bottom of the Parameters Definition dialog to open the Enumeration
Types dialog.

2. Type a name in the bottom row of the Enum Set table (where it says 'Enter type name…').

3. In the Enum Item Name table (on the right), click in the empty row and type a name for the 1st
name/value pair of the enumerated type; type a value under Value or accept the default.

4. Optionally, enter a string in Display Name that will display in the Component's Configure dialog
pull down menu for that parameter.

5. Enter as many enum sets as needed and click OK to close the Enumeration Types dialog.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 37

Defining Symbol Information

3.4 Specify Document Properties

Every symbol contains a set of properties that define different aspects of that symbol. To open the
Properties dialog, right-click on the symbol canvas and select Properties.

You can specify the following document properties for each Component, as applicable:

 Symbol Properties

 Doc.APIPrefix – Specifies a prefix that will be stripped on all API files in the Component
before generating the final user-visible file name during code generation.

For example, if you enter “Counter” as shown above for a counter Component, the generated
header file for a Component with instance name “Counter_1” will be Counter_1.h. If you enter
nothing in this property, the generated file would be Counter_1_Counter.h.

Note The APIPrefix is only applied to API files that are part of a project on disk. It is not
applied to API files generated by the API customizer.

 Doc.CatalogPlacement – Defines how the Component will display in the Component
Catalog. See Define Catalog Placement on page 38.

 Doc.CatalogVisibilityExpression – Used to enter an expression to show the symbol in the
Component Catalog. If this expression evaluates to 'false' and the "Show Hidden
Components" option (Tools > Options > Design Entry > Component Catalog) is not enabled,
the symbol (or schematic macro) will not be displayed in the Component Catalog.

 Doc.CustomContextMenuItems – Used to add additional context menu items to open files,
such as an API Reference. See Add Custom Context Menu on page 39.

 Doc.DefaultInstanceName – Defines the default instance name for Components. If left
blank, the instance name defaults to the Component name.

 Doc.ExternalComponent – Specifies whether the symbol is an external Component: true or
false. See Create External Component on page 38. Note The label reads as “Annotation” due
to legacy issues.

 Doc.SymbolSummary – Used to enter a brief description shown in the Component Catalog.

 Doc.SymbolVisibleInCatalog – Specifies whether the Component displays in the
Component Catalog: true or false.

38 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

 Doc.URL – Used to enter a complete web address or a file location on disk. If you enter a
valid value in this field, then various menu items become activated to allow a user to navigate
to the applicable web page, or open the specified file.

3.4.1 Create External Component

An external Component contains a symbol and parameters, but no implementation. It is used to
document the design schematic, typically by representing off-chip devices and wiring. Cypress
provides a number of external Components in a library, including resistors, capacitors, diodes, and
so on. To specify a Component as an external Component:

1. Set the Doc.ExternalComponent property in the Properties dialog to true.

This is used to skip the Component during elaboration and to enable DRC errors when digital or
analog wires/terminals are connected.

2. Then use an External terminal from the Design Elements Palette (DEP) to define the symbol
connections to off-chip resources.

Note A Component specified as an external Component cannot have non-external terminals;
however, a regular Component can include external terminals.

An external Component will generate a DRC if it contains non-external content. The DRC will warn
that the content will not be implemented. Likewise, the use of digital or analog terminals in an
external Component will also generate a DRC. This DRC will warn that the terminal does not
connect to anything functional.

3.4.2 Define Catalog Placement

You can define how symbols will be displayed in the Component Catalog under various tabs and
trees using the Catalog Placement dialog.

If you do not define catalog placement information, the symbol will display by default under Default >
Components.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 39

Defining Symbol Information

1. Open the dialog by clicking the ellipsis button in the Doc.CatalogPlacement field in the
Properties dialog.

2. On the left side of the dialog, enter placement definition in the first row of the table, using the
following syntax:

t/x/x/x/x/d

t – The tab name. The tab order displayed in the Symbol Catalog is alphabetical and case
insensitive.

x – A node in the tree. You must have at least one node.

d – The display name for the symbol (optional). If you do not specify the display name, the
symbol name will be used instead; however, you must use the syntax: t/x/.

For example, in the default Component Catalog for the Component named “PGA,” the tab name
(t) is Cypress, the first node (x) is Analog, the second node (x) is Amplifiers, and the display
name (d) is PGA: Cypress/Analog/Amplifiers/PGA.

3. On the right side of the dialog, under Default Parameter Values, enter default parameter values
for this particular catalog placement definition, as needed.

Note The default parameter value only defines the value used when a Component is first
instantiated. The value is a snap shot at that time. If the default value for the Component is
subsequently changed, that value does not get propagated down to any previously instantiated
Component.

4. If desired, add more rows in the left side table to enter more than one catalog placement
definition; set the same or different default parameter values for each additional row.

5. Click OK to close the dialog.

3.4.3 Add Custom Context Menu

You can add custom context menus that will be visible when the user right-clicks on an instance of
the Component. For example, you can add a context menu item to open an API Reference
document, tuner application, and any other additional files that a user might need to open.

1. Right-click on the symbol canvas and select Properties... to open the Properties dialog.

2. Click the ellipsis button in the Doc.CustomContextMenuItems field to open the Custom Context
Menu Items dialog.

40 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

3. Click the “+” icon to add a menu item.

4. Complete the necessary fields.

The fields include:

 Text – This text will be shown for the context menu item.

 Open – Specifies document file path or URL to open when the user selects the context menu
item.

If the file to open exists in the same directory as the <project>.cysym file, choose the file from
the drop-down list. Otherwise, manually type in file location's full/relative path or document
URL (e.g., .\MyComp.chm, www.cypress.com, etc.). Relative paths are relative to the
Component's folder.

You can add links relative to the project directory by using the macro: ${CyPrjDirPath}.

You can add links relative to the PDL by using the macro: ${CyPdlPath}.

Example:
${CyPdlPath}\adc\adc_scan_multich_polling_sw\pdl_user.h

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 41

Defining Symbol Information

 Arguments – Optional. Specifies arguments to use when the 'Open' path is executed.

Supports the following macro substitution: ${CyPdlPath}, ${CyPrjDirPath}.

 Image – Optional. Specifies the image file path to be shown on the left side of the context
menu item.

You must place an image file in the same directory as the <project>.cysym file to enable the
drop-down list. Otherwise, you cannot specify an image file.

 Visible – Expression to determine whether this context menu item will be shown or not.

 Enabled – Expression to determine whether this context menu item will be enabled or not.

5. Click OK to close the Custom Context Menu Items dialog, and then click OK to close the
Properties dialog.

6. Place the Component in a design project schematic and right-click on the Component instance.
Note that the menu item is shown as specified.

42 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Defining Symbol Information

3.5 Define Format Shape Properties

The Format Shape dialog is used to define properties for shapes. The types of properties available
will vary depending on the selected shape(s). For example, text offers font, color, size, etc., while a
line offers width, pen type, end cap, etc.

To open this dialog, select one or more shapes and click the Format Shape button.

3.5.1 Common Shape Properties

Most of the common shape properties in this dialog are self-explanatory, and they are similar to the
shape formatting you will see in other word-processing or drawing programs. For most of these
properties, you select a value from a pull-down menu.

3.5.2 Advanced Shape Properties

For some shapes, such as instance terminals, there are some advanced properties, including:

 Default Expression – Defines the default value for the shape expressed as
<size>’b<value>, where <size> = number of bits, and <value> = the binary value.

 Shape Tags – Defines one or more tags to be associated with one or more shapes for use with
the shape customization code; see Customizing Components (Advanced) on page 113.

 Visibility Expression – Defines an expression to evaluate whether or not the selected shape is
visible. For example in the UART Component, this property is defined with the variable
$FlowControl for the rts_n and cts_n terminals. If $FlowControl is set to true in the instance, then
these terminals display in the schematic; if false, they are hidden.

Note When setting the Visibility Expression of a terminal, the Default Expression must also be
specified. It will be used when the Visibility Expression of that terminal evaluates to false.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 43

4. Adding an Implementation

A Component implementation specifies the following:

 which devices are used, as well as which are not supported

 how the Component is built

 internal architecture and how it will be used

PSoC Creator allows you to create a Component using several design strategies for your specific
needs. Depending on the design goal of your particular application, the design strategy may vary
greatly between different implementation options. There are schematic implementations, schematic
macros, hardware implementations using the universal digital block (UDB) Editor, hardware
implementations using Verilog, and software implementations.

Schematic

The easiest and the most straight forward strategy to implement your Component is to use a
schematic (see Implement with a Schematic on page 45). A schematic allows you to place existing
Components on the design canvas much like any design. The design is then encapsulated into a
Component with its own input and output terminals with a unique function that can be used in other
designs. Use this method if you are using existing blocks to perform the new function.

This method does not allow you to work directly with the UDB elements and therefore limits the full
potential available in UDBs, such as datapaths and advanced programmable logic device (PLD)
features. If a separate UDB-based Component is available, then it can be used in a schematic-
based Component like any other available in the Component Catalog.

Schematic Macro

Similar to the schematic implementation, it is possible to create a schematic macro that contains a
design with pre-configured parameters and settings with several Components already linked
together. The schematic macro then becomes available in the Component Catalog and allows you to
use the pre-configured settings without worrying about the specifics of Component configurations. A
schematic macro is usually created for Component implementations that have complex
configurations. It is not normally used as a template for large designs with many Components on the
schematic. See Create a Schematic Macro on page 46 for details on implementing a schematic
macro.

UDB-Based Designs

For UDB-based designs, use the UDB Editor, or use Verilog and the Datapath Configuration Tool.
Both methods allow access to UDB elements. However your preference may differ depending on the
circumstances.

 The UDB Editor is used to graphically describe the digital functions in UDBs. It does not require
you to know Verilog or have knowledge of the Datapath Configuration Tool. Therefore, it may be
an easier option than the Verilog method. The UDB Editor takes care of many internal

44 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

configuration details simply by specifying the parameters of the UDB blocks on the design
canvas. These graphical configurations are then used to generate Verilog code in real time and
can be used to observe how the blocks translate into code. However, the trade-off in using the
UDB editor is that some advanced features of the UDB are not supported with this method. Also
for users who know Verilog, it may be faster for them to use the Verilog method when designing
state-machines. Refer to the separate UDB Editor Guide available from the PSoC Creator Help
menu.

 Implementing a UDB Component with Verilog is the most versatile but also the most complex and
is not recommended for beginners. Verilog allows you to design state machines that are more
refined than the UDB Editor. It may also be easier for users who are familiar with digital logic and
Verilog to use this method. To gain access to the datapath, you will also need to use the Datapath
Configuration Tool, which allows full functionality of the datapath. With this you will be able to use
the full potential of UDBs to create efficient and complex logic. See Implement with Verilog on
page 55.

Software

Implementations can also be just software. Implementing a Component with software means that no
hardware is used or referenced in the design. For instance, this method is used in Components that
act as an interface to link several codes together. See Implement with Software on page 68 for more
details.

Exclude

If your Component is intended to support only certain PSoC families, series, or devices, then it is
also possible to explicitly state that this Component is supported only for those specific parts. See
Exclude a Component on page 69 for more information on excluding Components.

Implementation Priority

Note that for implementations using hardware such as schematic, UDB Editor or Verilog, PSoC
Creator will use only one of these to make the Component and will ignore the rest. The priority of
these implementations is as follows.

1. Verilog – Has the highest priority. Creator ignores UDB Editor or schematics in the Component
workspace.

2. UDB Editor – Has higher priority than a schematic, but will be ignored if there is a Verilog file in
the Component workspace.

3. Schematic – Has the lowest priority and will be ignored if either a Verilog or UDB Editor file is in
the workspace.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 45

Adding an Implementation

4.1 Implement with a Schematic

The schematic is a graphical diagram that represents the internal connectivity of the Component.
When you finish creating the Component, instantiate it in a design, and build it (see Finishing the
Component on page 81), the necessary files are generated to provide information for use with Warp
and the fitter, etc.

4.1.1 Add a Schematic

To add a schematic file to your Component:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Schematic icon.

Note The schematic will inherit the Component name.

3. De-select the Target generic device to specify the Family, Series, and/or Device using the drop
down menus, or leave the check box selected to allow the Component to apply to all devices.

4. Click Create New.

In the Workspace Explorer tree, the schematic file (<project>.cysch) is listed in the appropriate
directory, depending on the device option specified.

The Schematic Editor opens the <project>.cysch file, and you can draw a diagram that represents
the Component connectivity at this time.

46 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

4.1.2 Complete the Schematic

Refer to the PSoC Creator Help section “Using Design Entry Tools > Schematic Editor” for details
about using the Schematic Editor.

4.1.2.1 Design-Wide Resources (DWR) Settings

DWR settings are bound to DWR Component instances (clocks, interrupts, DMA, etc). Therefore the
naming convention for these Components within your Component will assure that they always map
correctly.

 They are associated with an auto generated internal ID.

 They are associated by hierarchical instance name.

If you create a Component with a DWR, you can rename it at will with no consequence. The internal
ID is used to maintain the association.

If you delete a DWR from your Component, the system will fall back on using the hierarchical
instance name. If you then add a new DWR Component, and give it a different name, the
<project>.cydwr file will lose any settings the end user had associated with their DWR Component.

4.2 Create a Schematic Macro

A schematic macro is a mini-schematic that allows you to implement a Component with multiple
elements, such as existing Components, pins, clocks, etc. A Component can have multiple macros.
Macros can have instances (including the Component for which the macro is being defined),
terminals, and wires.

Schematic macros are typically created to simplify usage of the Components. Typical use cases of
the Components in schematics will be prepared and made available as macros. The end user will
use macros instead of using bare symbols.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 47

Adding an Implementation

4.2.1 Add a Schematic Macro Document

Add a schematic macro to a Component in the same manner as any other type of Component item.
To add a schematic macro file to your Component:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Schematic Macro icon.

3. De-select the Target generic device to specify the Family, Series, and/or Device using the drop
down menus, or leave the check box selected to allow the Component to apply to all devices.

Schematic macros "belong" to a Component. Macros can be created at the Family, Series,
Device, and generic levels. There can be multiple macros at the same level. This is different from
other representations (schematic, Verilog) in the Component. The names of macro file names will
be unique in a Component.

4. Click Create New.

In the Workspace Explorer, the schematic macro file (<project>.cymacro) is listed in the appropriate
directory, depending on the device option specified.

The Schematic Macro Editor opens the <project>.cymacro file. You can add Components, define
predefined settings such as a default clock frequency, and override default settings of each
Component, etc. You can also use macros to predefine I/O pin configurations necessary for a
communication interface or an analog Component, etc.

4.2.2 Define the Macro

The following shows an example for creating a Timer macro:

1. Place a Timer Component from the catalog.

If desired, you could set the parameters of this Component to override the Timer’s default values.
Refer to the Component datasheet for various parameters available.

2. Place a clock Component from the library, and configure as necessary.

3. Connect the clock output to the “clock” input terminal of the Timer Component.

4. Place a “Logic Low” Component on the schematic and connect it to the “reset” input of the Timer.

48 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

5. Right click in the schematic macro somewhere and select Properties from the drop down.

Change the Component catalog placement and summary to the desired settings.

6. Open the Timer symbol file, right click somewhere in the empty space and select Properties from
the drop down. Make the setting to Hide the Component from the Component catalog.

In a design project you will see the following:

7. Once you place this in your design, experiment with how you can delete the logic low or change
the clock or timer settings, etc.

4.2.3 Versioning

Since macros belong to a Component (see above) they are implicitly versioned through the
versioning of the Component. The macro name will not include the version number of the macro or
Component.

4.2.4 Component Update Tool

The Component Update Tool is used to update instances of Components on schematics. When a
macro is placed on a schematic the "macroness" of the placed elements disappears. The individual
parts of the macro are now independent schematic elements. Since there are no "instances" of
macros on a schematic, the Component Update Tool has nothing to update.

However, a schematic macro itself is defined as a schematic. That schematic may contain instances
of other Components that can be updated via the Component Update Tool. The macro definition
schematic is visible to the Component Update Tool and all appropriate updates are available.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 49

Adding an Implementation

4.2.5 Macro File Naming Conventions

The extension of the macro files will be ".cymacro". Default filenames will be <Component name>_
<[0-9][0-9]>.cymacro.

4.2.5.1 Macro and Symbol with Same Name

It is not recommended that Component authors create a macro with the same name and catalog
placement as the symbol since this can lead to confusion for the end user.

4.2.6 Document Properties

Schematic macros have many of the same properties as a symbol. See Specify Document
Properties on page 37 for more information.

4.2.6.1 Component Catalog Placement

The catalog placement property for the macro is similar to symbol catalog placement, except there
are no parameters associated with the placement. The catalog placement editor allows the macro to
be placed at multiple places in the Component catalog.

Schematic macros will be listed in the Component catalog similar to the way symbols are displayed
in the catalog. If a macro display name is repeated in another Component, the macro is displayed
with an index in parenthesis to denote that there are more than one instances of the macro with the
same display name.

4.2.6.2 Summary Text

PSoC Creator allows symbols to have associated "summary text" that is displayed in the Component
preview area when the symbol is selected in the Component Catalog. Macros will support this same
feature. A summary text field will be available in the schematic macro editor and when the macro is
selected in the Component catalog the text will be displayed in the preview area (handled the same
way that the symbol is handled).

4.2.6.3 Hidden Property

Macros support the hidden property the same way the symbols support it. The property will be
available for editing in the macro editor.

4.2.7 Macro Datasheets

Schematic macros will not have a separate datasheet. Instead, all macros defined for a given
Component will be documented in a separate section of that Component's datasheet. When
selected in the Component Catalog, the macro’s preview area will show a link to the Component's
datasheet.

4.2.8 Post-Processing of the Macro

When a macro is dropped on a schematic, the names of instances, terminals, and wires have to be
recomputed. At the end of post-processing, the instance, terminal, and wire names should not
conflict with the existing names in the schematic.

50 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

For each instance, terminal, and wire in the macro, PSoC Creator must assign a non-conflicting
name before adding it to the model. Each instance, terminal, and wire is added to the schematic
making sure that the HDL name being used for the item is currently not used in the schematic
already. The base names of the items will be suffixed with numbers and incremented until a unique
HDL name is available.

4.2.9 Example

Assume there is a macro with one instance (named “i2c_master”), three terminals (named “sclk,”
“sdata,” and “clk”) and three wires (wires are not named; their effective names are sclk, sdata, and
clk, respectively). If the schematic is empty and a macro is dropped on the schematic, the names of
the instances, terminals, and wires will be as follows:

 Instance: i2c_master

 Terminals: sclk, sdata, and clk

 Wires: sclk, sdata, and clk

If the macro is dropped again, the names would be as follows:

 Instance: i2c_master_1

 Terminals: sclk_1, sdata_1, and clk_1

 Wires: sclk_1, sdata_1, and clk_1

If the names are already used, then the suffix is incremented until a valid name is available.

4.3 Implement a UDB Component

In order to fully utilize the resources available in UDBs, it is necessary to design a UDB Component
using either the UDB Editor or with Verilog and the datapath configuration tool. Each method has its
advantages and disadvantages, but in general the Verilog method is more advanced than the UDB
Editor. In this section we describe the underlying architecture of the UDB and list out the available
resources. Following this, designing with UDB Editor and with Verilog are presented.

4.3.1 Introduction to UDB Hardware

A UDB is a combination of uncommitted PLDs, a structured processor module (datapath), control
and status registers, and a 7 bit counter (count7) that are connected through flexible routing. These
elements can be used to form many types of logic and can be chained together to form large
designs. A design may communicate with the CPU, with other hardware blocks in a PSoC device, or
both. This flexibility allows the UDB to form logic that links other hardware in your design, or can be
a stand-alone block that performs a new function.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 51

Adding an Implementation

4.3.1.1 UDB Overview

The following figure shows a high-level block diagram of a UDB. This figure highlights the main
blocks in a UDB and how these are connected and controlled. Internal signals and the individual
inputs and outputs are not shown. The blocks are color coded to differentiate between the types.
Purple is a register, blue is a fixed block that performs a defined function, green is the datapath, and
orange is the input and output of the arithmetic logic unit (ALU) and shifter. White is PLD logic. For
detailed information on the UDB architecture, refer to the TRM.

UDBs are driven with a user clock and the bus clock. The bus clock reads from and writes to the
registers in the datapath and the control/status registers. These data words travel through the PHUB
system bus. The user clock drives the blocks in the UDB. Signals in a UDB can be routed to form a
hardware output in a Component or can be used to drive the inputs of the structured blocks in a
UDB.

 PLD – These are most often used to create logic to control the other structured resources
available in a UDB. PLD based designs are composed of both combinational logic and sequential
logic. The sequential logic is driven with the user clock. Although PLDs are the most flexible
element in a UDB, it is also resource intensive. Therefore it is recommended to use the other
structured blocks as much as possible when implementing large designs.

 Datapath – A datapath is an 8-bit wide processor that can be used to perform simple arithmetic
and bitwise operations on data words. It can be chained to form 16-, 24-, and 32-bit wide
processors. It can have up to 8 user defined instructions that are often driven using the PLD
implemented state machine. Datapaths form the core of many UDB designs and should be used
in preference over PLD designs when 8-bit words or larger are used. For more information on
using the datapath, see Datapath Operation on page 52.

 Control Register – A control register is used in a UDB to communicate with the CPU. Using a
control register, it is possible for the CPU to directly send commands to the UDB hardware. The
reading and writing of the control register from the CPU is performed at the bus clock, unless it is
in sync or pulse mode with the user defined clock.

52 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

 Status Register – A status register is used to notify the CPU on the status of the hardware signal
states. The rate at which the status register is read by the CPU is controlled using the bus clock
whereas the register is written by the UDB at the user clock. Status registers also have the ability
to generate maskable interrupts. This is accomplished by using one pin for the interrupt output
and the other 7 bits as the maskable triggers for the interrupt.

 Count7 Counter – UDBs contain a 7-bit counter that can be used instead of a counter
implementation using PLDs or a datapath. This can save resources if the required counter bits
are between 4 and 7 bits. The terminal count of the counter can then be used throughout your
design.

4.3.1.2 Datapath Operation

A UDB-based PSoC device datapath is essentially a very small 8-bit wide processor with 8 states
defined in a "dynamic configuration." Consecutive datapaths can be tied together to operate on
wider datawidths using one of the following pre-defined modules. The following description provides
a high-level description of the datapath and how it is used. For full details on the datapath, refer to
the TRM.

Datapath Instructions

The datapath is broken into the following sections:

 ALU – An ALU is capable of the following operations on 8-bit data. When multiple datapaths are
tied together to form 16, 24, and 32 bits, then the operations act on the full datawidth.

 Pass-Through

 Increment (INC)

 Decrement (DEC)

 Add (ADD)

 Subtract (SUB)

 XOR

 AND

 OR

 Shift – The output of the ALU is passed to the shift operator, which is capable of the following
operations. When multiple datapaths are tied together to form 16, 24, and 32 bits, then the
operations act on the full datawidth.

 Pass-Through

 Shift Left

 Shift Right

 Nibble Swap

 Mask – The output of the shift operator is passed to a mask operator, which is capable of
masking off any of the 8 bits of the datapath.

 Registers – The datapath has the following registers available to the hardware and to the CPU
with various configuration options defined in the static configuration registers.

 Two Accumulator Registers: ACC0 and ACC1

 Two Data Registers: DATA0 and DATA1

 Two 4-byte deep FIFOs: FIFO0 and FIFO1 capable of multiple modes of operation

 Comparison Operators

 Zero Detection: Z0 and Z1 which compare ACC0 and ACC1 to zero respectively and output
the binary true/false to the interconnect logic for use by the hardware as necessary.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 53

Adding an Implementation

 FF Detection: FF0 and FF1 which compare ACC0 and ACC1 to 0xFF respectively and output
the binary true/false to the interconnect logic for use by the hardware as necessary.

 Compare 0:

Compare equal (ce0) – Compare (ACC0 & Cmask0) is equal to DATA0 and output the binary
true/false to the interconnect logic for use by the hardware as necessary. (Cmask0 is configu-
rable in the static configuration.)

Compare Less Than (cl0) – Compare (ACC0 & Cmask0) is less than DATA0 and output the
binary true/false to the interconnect logic for use by the hardware as necessary. (Cmask0 is
configurable in the static configuration.)

 Compare 1:

Compare equal (ce1) – Compare ((ACC0 or ACC1) & Cmask1) is equal to (DATA1 or ACC0)
and output the binary true/false to the interconnect logic for use by the hardware as neces-
sary. (Cmask1 is configurable in the static configuration)

Compare Less Than (cl1) – Compare (ACC0 & Cmask0) is less than DATA0 and output the
binary true/false to the interconnect logic for use by the hardware as necessary. (Cmask1 is
configurable in the static configuration)

 Overflow Detection: Indicates the msb has overflowed by driving ov_msb output as a binary
true/false to the interconnect logic for use by the hardware as necessary.

The datapath allows for many different configurations that are common in almost every Component
that will be designed. Many functions within a datapath that can be implemented with Verilog fit into
the PLDs. However, the PLDs will be used up very quickly, whereas the datapath is a fixed block.
There will always be a trade-off between the number of datapaths and PLDs available. It is up to the
designer to decide which of these is a more precious resource. Note that some functions, such as
FIFOs, cannot be implemented in the PLDs.

Datapath Registers

Each datapath contains 6 registers - A0, A1, D0, D1, F0 and F1. These serve different functions with
certain restrictions, and can be used in a variety of ways to form your design.

 Accumulator registers A0 and A1 are often used like RAM to hold temporary values entering and
coming out of the ALU. These are the most versatile registers and are also the most accessed.

 Data registers D0 and D1 are not as versatile as the accumulator registers. They can be written
by the datapath only from the FIFO and by consuming an extra d0_load or d1_load input signal.
For this reason it is often used like ROM in the design.

 4-word deep FIFOs F0 and F1 are often used as the input and output buffers for the datapath.
These cannot directly source the ALU and the value in the FIFO must be loaded in to the
accumulator register before it can be used by the ALU. See FIFO Modes on page 54 for more
details on the FIFO configurations.

Datapath Inputs/Output

A datapath, regardless of data width can contain up to 6 input bits. Of the 6 input bits, up to 3 bits can
be used to control the datapath instructions for that clock cycle. Therefore 8 unique datapath
instructions can be used in the design. Each of these instructions can perform multiple operations in
the same clock cycle, which can further optimize performance.

54 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

Similarly, a datapath can contain up to 6 outputs regardless of the data width. These outputs are
used to send status signals from the datapath to either a status register or to other blocks in the
design such as the state machine or the count7 counter. These status signals are generated from
comparisons and internal logic in the datapath and do not include data bits directly from the registers
or the ALU. It is possible however to access this information by using the shifter to serially shift out
the bits in the ALU.

FIFO Modes

The 4-word deep FIFOs in datapaths can be configured to several modes using an auxiliary control
register. This register is used by the CPU/DMA to dynamically control the interrupt, counter, and
FIFO operations. Refer to the TRM for more information about the auxiliary control register.

FIFOs are set to either single buffer or normal mode.

 Single buffer mode – This mode configures the FIFO to be a 1-word deep buffer instead of the
normal 4-word deep FIFO. Any value written to the FIFO immediately overwrites its content. This
mode can be used if only a 1-register FIFO with its corresponding FIFO bus and block status
signals are needed.

 Normal mode – Normal mode is the standard 4-word deep FIFO that can be used to fill up to
four data words.

The data transfers to and from the FIFO are often controlled using the FIFO bus and block status
signals. These are FIFO 0/1 block status (f0_block_stat, f1_block_stat), and FIFO 0/1 bus status
(f0_bus_stat, f1_bus_stat) signals. The behaviors of these are dependent on the input/output mode
and the auxiliary control register settings. The following table shows the possible configurations.

Note This is for illustrative purposes only. For more detail descriptions on the FIFO configuration,
refer to the TRM.

Level mode can be configured by setting the FIFO level mode of the auxiliary control register to
either NORMAL or MID.

 NORMAL FIFO level - A NORMAL FIFO level allows the bus status signal to assert whenever
there is at least 1 word that is ready to be read or written (depending on the FIFO direction).

 MID FIFO level - A MID FIFO level allows the bus status signal to assert whenever there are at
least 2 words that are ready to be read or written (depending on the FIFO direction).

Direction Level Mode Signal Status Description

Input

N/A Block status Empty
Asserted when there are no bytes left in the
FIFO.

NORMAL Bus status Not full
Asserted when there is room for at least 1 word
in the FIFO.

MID Bus status
At least half
empty

Asserted when there is room for at least 2
words in the FIFO.

Output

N/A Block status Full Asserted when the FIFO is full.

NORMAL Bus status Not empty
Asserted when there is at least 1 word avail-
able to be read from the FIFO.

MID Bus status At least half full
Asserted when there are at least 2 words avail-
able to be read from the FIFO.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 55

Adding an Implementation

4.3.2 Implement with UDB Editor

The UDB Editor is a graphical tool used to construct UDB-based designs without the need of writing
Verilog or using the more advanced datapath configuration tool. Refer to the PSoC Creator UDB
Editor Guide for complete instructions on using this tool.

4.3.3 Implement with Verilog

You can describe the functionality of your Component using Verilog. PSoC Creator allows you to add
a Verilog file to your Component, as well as write and edit the file. Should you choose to use a
Verilog implementation, be aware that there are certain requirements, and that PSoC Creator only
supports the synthesizable subset of the Verilog language; refer to the Warp Verilog Reference
Guide. You also may need to use the Datapath Configuration Tool to edit datapath instance
configurations.

Note Any primitive embedded in Verilog will not have an API automatically generated for it. The
appropriate #define values will be created, but for example a cy_psoc3_control embedded in Verilog
will not cause APIs to be generated that are normally produced when a Control Register symbol is
placed on a schematic.

4.3.3.1 Verilog File Requirements

PSoC Creator allows for only one Verilog file per Component, and PSoC Creator only supports a
synthesizable subset of the Verilog language.

The name of the Component created with a symbol in PSoC Creator must match exactly the name
of the module defined in the Verilog file. PSoC Creator also creates the Verilog file with the same
name as the Component. As a designer you are required to use this same name as your module
name.

For example, a “ModuleName” Component created in PSoC Creator will generate a ModuleName.v
file for you to develop the digital content. The top module in that file must be a “ModuleName” (case
sensitive) for it to be built correctly in PSoC Creator.

In the following example, the text entered in the Component name text box (“ModuleName”) must
match the module name used in the Verilog file [“module ModuleName(….)”].

56 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

You must think of the naming convention you want to follow when you create the symbol to start off
the process as shown in the example above.

A file has been provided by Cypress that contains all of the constants expected in a Component
Verilog file. These constants are available in the cypress.v file. This file is contained in the search
path for all Verilog compilations in PSoC Creator. All Verilog files will use the cypress.v file and
therefore must have this line before the module declaration:

`include “cypress.v”

4.3.3.2 Add a Verilog File

New File

If you do not have an existing Verilog file, you can use the Generate Verilog tool , which will
create a basic Verilog file with the appropriate file name, ‘include “cypress.v”, and basic
module information based on how you have defined the symbol.

Existing File

If you have an existing Verilog file, you can add it as a Component item.

1. Right click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Verilog icon.

Note The Verilog file will inherit the Component name. See Verilog File Requirements on
page 55.

3. If necessary, toggle the Create New button to Add Existing.

4. Click the ellipsis button [...], navigate to the location of the file, and click Open.

5. Click Add Existing.

The Verilog file is added to the Workspace Explorer with the appropriate file name.

4.3.3.3 Complete the Verilog file

Double-click on the Verilog file to open it, and complete the file as needed.

Note The Verilog implementation's module name must match its Component name; it is case
sensitive.

For UDB-based PSoC devices, the Verilog implementation allows for Verilog2005 design and will
compile into the PLDs available in the architecture. However. there are several other modules
available which are optimized functions to prevent usage of the precious PLD resources. These
modules and their use are listed in the next few sections.

4.3.4 UDB Elements

The PSoC Universal Digital Block (UDB) contains several individually programmable Components
that can be accessed via Verilog when creating your design. The items contained in the UDB are the
datapath, status/statusi register, control register, and count7 counter. When used in a way that
requires a clock, the UDB Components can be driven by a special Verilog Component. This
Component allows the customer to inform the fitter about the clock behavior to enforce for that
Component in the UDB.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 57

Adding an Implementation

Note Many references in this guide and in the Component names specify “psoc3.” These references
apply to all UDB-based PSoC devices, including PSoC 3 and PSoC 5LP.

4.3.4.1 Clock/Enable Specification

For those portions of a UDB that utilize a clock, it is possible to specify the type of clock required
(synchronous vs asynchronous), as well as an enable signal for the clock. The fitter will use this
information to inspect the clock, enable the type requested, and make any necessary changes to the
routing/implementation of the clock within the UDB to ensure it meets the requested characteristics
at the output clock.

cy_psoc3_udb_clock_enable_v1_0

This primitive allows for the specification of the clock characteristics for the UDB Components being
driven by its output. The output from the element can only drive UDB elements. Any other
Component will result in a DRC error in the fitter. The element has one parameter:

 sync_mode : A boolean parameter that designates whether the resulting clock should be
synchronous (true) or asynchronous (false). The default is synchronous.

Instantiate the element as shown:

4.3.4.2 Datapath(s)

To Instantiate a datapath or multiple consecutive datapaths in your design, use one of the following
module instantiations within your Verilog module.

cy_psoc3_dp

This is the base datapath element available. There are several other elements which build on this
base element and they should be used before this element is chosen, because all I/Os available on
this element are listed in the instantiation. However, there are several limitations because of the
architecture of UDBs in UDB-based PSoC devices, such that many of these signals have a limited
number of wires in your design to which they can connect. It would be wise to always use the
cy_psoc3_dp8 module when a single datapath is necessary.

Each datapath has several parameters that can be passed as named parameters to the module
itself. The Datapath Configuration Tool should be the method used to implement the parameters in
the Verilog file for all datapaths. This tool will read a Verilog file, display all of the datapaths, and save
the correct information back to the Verilog file for use by the compiler (Warp).

The parameters are:

 cy_dpconfig: the configuration for the datapath which includes the dynamic and static
configurations. Default value is {128’h0,32’hFF00FFFF, 48’h0}

 d0_init: Initialization value for DATA0 Registers. Default value is 8’b0

 d1_init: Initialization value for DATA1 Registers. Default value is 8’b0

 a0_init: Initialization value for ACC0 Registers. Default value is 8’b0

cy_psoc3_udb_clock_enable_v1_0 #(.sync_mode(`TRUE)) MyCompClockSpec (
 .enable(), /* Enable from interconnect */
 .clock_in(), /* Clock from interconnect */
 .clock_out() /* Clock to be used for UDB elements in this Component */
);

58 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

 a1_init: Initialization value for ACC1 Registers. Default value is 8’b0

Instantiate this datapath as shown in the following example:

cy_psoc3_dp DatapathName(
 /* input */ .clk(), // Clock
 /* input [02:00] */ .cs_addr(), // Dynamic Configuration RAM address
 /* input */ .route_si(), // Shift in from routing
 /* input */ .route_ci(), // Carry in from routing
 /* input */ .f0_load(), // Load FIFO 0
 /* input */ .f1_load(), // Load FIFO 1
 /* input */ .d0_load(), // Load Data Register 0
 /* input */ .d1_load(), // Load Data Register 1
 /* output */ .ce0(), // Accumulator 0 = Data register 0
 /* output */ .cl0(), // Accumulator 0 < Data register 0
 /* output */ .z0(), // Accumulator 0 = 0
 /* output */ .ff0(), // Accumulator 0 = FF
 /* output */ .ce1(), // Accumulator [0|1] = Data register 1
 /* output */ .cl1(), // Accumulator [0|1] < Data register 1
 /* output */ .z1(), // Accumulator 1 = 0
 /* output */ .ff1(), // Accumulator 1 = FF
 /* output */ .ov_msb(), // Operation over flow
 /* output */ .co_msb(), // Carry out
 /* output */ .cmsb(), // Carry out
 /* output */ .so(), // Shift out
 /* output */ .f0_bus_stat(), // FIFO 0 status to uP
 /* output */ .f0_blk_stat(), // FIFO 0 status to DP
 /* output */ .f1_bus_stat(), // FIFO 1 status to uP
 /* output */ .f1_blk_stat(), // FIFO 1 status to DP
 /* input */ .ci(), // Carry in from previous stage
 /* output */ .co(), // Carry out to next stage
 /* input */ .sir(), // Shift in from right side
 /* output */ .sor(), // Shift out to right side
 /* input */ .sil(), // Shift in from left side
 /* output */ .sol(), // Shift out to left side
 /* input */ .msbi(), // MSB chain in
 /* output */ .msbo(), // MSB chain out
 /* input [01:00] */ .cei(), // Compare equal in from prev stage
 /* output [01:00] */ .ceo(), // Compare equal out to next stage
 /* input [01:00] */ .cli(), // Compare less than in from prv stage
 /* output [01:00] */ .clo(), // Compare less than out to next stage
 /* input [01:00] */ .zi(), // Zero detect in from previous stage
 /* output [01:00] */ .zo(), // Zero detect out to next stage
 /* input [01:00] */ .fi(), // 0xFF detect in from previous stage
 /* output [01:00] */ .fo(), // 0xFF detect out to next stage
 /* input */ .cfbi(), // CRC Feedback in from previous stage
 /* output */ .cfbo(), // CRC Feedback out to next stage
 /* input [07:00] */ .pi(), // Parallel data port
 /* output [07:00] */ .po() // Parallel data port
);

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 59

Adding an Implementation

cy_psoc3_dp8

This is a single 8-bit wide datapath element.

This element has the same parameters for each datapath as the base datapath element. All
parameters are appended with “_a” to indicate the LSB datapath (X=a for LSB datapath in the
following list).

 cy_dpconfig_X,: the configuration for the datapath which includes the dynamic and static
configurations. Default value is {128’h0,32’hFF00FFFF, 48’h0}

 d0_init_X: Initialization value for DATA0 Registers. Default value is 8’b0

 d1_init_X: Initialization value for DATA1 Registers. Default value is 8’b0

 a0_init_X: Initialization value for ACC0 Registers. Default value is 8’b0

 a1_init_X: Initialization value for ACC1 Registers. Default value is 8’b0

Instantiate this datapath as shown in the following example:

cy_psoc3_dp16

This is two 8-bit wide datapath elements set up to be two consecutive datapaths for a 16-bit wide
module. ALU, Shift, and Mask operations operate on the full 16-bit width of the data by having direct
connections of the carry, shift-in, shift-out, and feedback signals between the individual datapaths.

This element has the same parameters for each datapath as the base datapath element. All
parameters are appended with “_a” to indicate the LSB datapath and “_b” to indicate the MSB of the
two datapaths (X=a for LSB datapath and X=b for MSB datapath in the following list).

 cy_dpconfig_X,: the configuration for the datapath which includes the dynamic and static
configurations. Default value is {128’h0,32’hFF00FFFF, 48’h0}

cy_psoc3_dp8 DatapathName(
 /* input */ .clk(), // Clock
 /* input [02:00] */ .cs_addr(), // Dynamic COnfiguration RAM address
 /* input */ .route_si(), // Shift in from routing
 /* input */ .route_ci(), // Carry in from routing
 /* input */ .f0_load(), // Load FIFO 0
 /* input */ .f1_load(), // Load FIFO 1
 /* input */ .d0_load(), // Load Data Register 0
 /* input */ .d1_load(), // Load Data Register 1
 /* output */ .ce0(), // Accumulator 0 = Data register 0
 /* output */ .cl0(), // Accumulator 0 < Data register 0
 /* output */ .z0(), // Accumulator 0 = 0
 /* output */ .ff0(), // Accumulator 0 = FF
 /* output */ .ce1(), // Accumulator [0|1] = Data register 1
 /* output */ .cl1(), // Accumulator [0|1] < Data register 1
 /* output */ .z1(), // Accumulator 1 = 0
 /* output */ .ff1(), // Accumulator 1 = FF
 /* output */ .ov_msb(), // Operation over flow
 /* output */ .co_msb(), // Carry out
 /* output */ .cmsb(), // Carry out
 /* output */ .so(), // Shift out
 /* output */ .f0_bus_stat(), // FIFO 0 status to uP
 /* output */ .f0_blk_stat(), // FIFO 0 status to DP
 /* output */ .f1_bus_stat(), // FIFO 1 status to uP
 /* output */ .f1_blk_stat() // FIFO 1 status to DP
);

60 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

 d0_init_X: Initialization value for DATA0 Registers. Default value is 8’b0

 d1_init_X: Initialization value for DATA1 Registers. Default value is 8’b0

 a0_init_X: Initialization value for ACC0 Registers. Default value is 8’b0

 a1_init_X: Initialization value for ACC1 Registers. Default value is 8’b0

Instantiate this datapath as shown in the following example:

cy_psoc3_dp24

This is three 8-bit wide datapath elements set up to be three consecutive datapaths for a 24-bit wide
module. ALU, Shift, and Mask operations operate on the full 24-bit width of the data by having direct
connections of the carry, shift-in, shift-out, and feedback signals between the individual datapaths.

This element has the same parameters for each datapath as the base datapath element. All
parameters are appended with “_a” to indicate the LSB datapath, “_b” to indicate the middle
datapath, and “_c” to indicate the MSB datapath of the three datapaths (X=a for LSB datapath, X=b
for the middle datapath, and X=c for MSB datapath in the following list).

 cy_dpconfig_X,: the configuration for the datapath which includes the dynamic and static
configurations. Default value is {128’h0,32’hFF00FFFF, 48’h0}

 d0_init_X: Initialization value for DATA0 Registers. Default value is 8’b0

 d1_init_X: Initialization value for DATA1 Registers. Default value is 8’b0

 a0_init_X: Initialization value for ACC0 Registers. Default value is 8’b0

 a1_init_X: Initialization value for ACC1 Registers. Default value is 8’b0

cy_psoc3_dp16 DatapathName(
 /* input */ .clk(), // Clock
 /* input [02:00] */ .cs_addr(), // Dynamic Configuration RAM address
 /* input */ .route_si(), // Shift in from routing
 /* input */ .route_ci(), // Carry in from routing
 /* input */ .f0_load(), // Load FIFO 0
 /* input */ .f1_load(), // Load FIFO 1
 /* input */ .d0_load(), // Load Data Register 0
 /* input */ .d1_load(), // Load Data Register 1
 /* output [01:00] */ .ce0(), // Accumulator 0 = Data register 0
 /* output [01:00] */ .cl0(), // Accumulator 0 < Data register 0
 /* output [01:00] */ .z0(), // Accumulator 0 = 0
 /* output [01:00] */ .ff0(), // Accumulator 0 = FF
 /* output [01:00] */ .ce1(), // Accumulator [0|1] = Data register 1
 /* output [01:00] */ .cl1(), // Accumulator [0|1] < Data register 1
 /* output [01:00] */ .z1(), // Accumulator 1 = 0
 /* output [01:00] */ .ff1(), // Accumulator 1 = FF
 /* output [01:00] */ .ov_msb(), // Operation over flow
 /* output [01:00] */ .co_msb(), // Carry out
 /* output [01:00] */ .cmsb(), // Carry out
 /* output [01:00] */ .so(), // Shift out
 /* output [01:00] */ .f0_bus_stat(), // FIFO 0 status to uP
 /* output [01:00] */ .f0_blk_stat(), // FIFO 0 status to DP
 /* output [01:00] */ .f1_bus_stat(), // FIFO 1 status to uP
 /* output [01:00] */ .f1_blk_stat() // FIFO 1 status to DP
);

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 61

Adding an Implementation

Instantiate this datapath as shown in the following example:

cy_psoc3_dp32

This element is four 8-bit wide datapath elements set up to be four consecutive datapaths for a 32-bit
wide module. ALU, Shift, and Mask operations operate on the full 32-bit width of the data by having
direct connections of the carry, shift-in, shift-out, and feedback signals between the individual
datapaths.

This element has the same parameters for each datapath as the base datapath element. All
parameters are appended with “_a” to indicate the LSB datapath, “_b” to indicate the lower middle
datapath, “_c” to indicate the upper middle datapath, and “_d” to indicate the MSB datapath of the
four datapaths (X=a for LSB datapath, X=b for the lower middle datapath, X=c for the upper middle
datapath, and X=d for MSB datapath in the following list).

 cy_dpconfig_X,: the configuration for the datapath which includes the dynamic and static
configurations. Default value is {128’h0,32’hFF00FFFF, 48’h0}

 d0_init_X: Initialization value for DATA0 Registers. Default value is 8’b0

 d1_init_X: Initialization value for DATA1 Registers. Default value is 8’b0

 a0_init_X: Initialization value for ACC0 Registers. Default value is 8’b0

 a1_init_X: Initialization value for ACC1 Registers. Default value is 8’b0

cy_psoc3_dp24 DatapathName(
 /* input */ .clk(), // Clock
 /* input [02:00] */ .cs_addr(), // Dynamic Configuration RAM address
 /* input */ .route_si(), // Shift in from routing
 /* input */ .route_ci(), // Carry in from routing
 /* input */ .f0_load(), // Load FIFO 0
 /* input */ .f1_load(), // Load FIFO 1
 /* input */ .d0_load(), // Load Data Register 0
 /* input */ .d1_load(), // Load Data Register 1
 /* output [02:00] */ .ce0(), // Accumulator 0 = Data register 0
 /* output [02:00] */ .cl0(), // Accumulator 0 < Data register 0
 /* output [02:00] */ .z0(), // Accumulator 0 = 0
 /* output [02:00] */ .ff0(), // Accumulator 0 = FF
 /* output [02:00] */ .ce1(), // Accumulator [0|1] = Data register 1
 /* output [02:00] */ .cl1(), // Accumulator [0|1] < Data register 1
 /* output [02:00] */ .z1(), // Accumulator 1 = 0
 /* output [02:00] */ .ff1(), // Accumulator 1 = FF
 /* output [02:00] */ .ov_msb(), // Operation over flow
 /* output [02:00] */ .co_msb(), // Carry out
 /* output [02:00] */ .cmsb(), // Carry out
 /* output [02:00] */ .so(), // Shift out
 /* output [02:00] */ .f0_bus_stat(), // FIFO 0 status to uP
 /* output [02:00] */ .f0_blk_stat(), // FIFO 0 status to DP
 /* output [02:00] */ .f1_bus_stat(), // FIFO 1 status to uP
 /* output [02:00] */ .f1_blk_stat() // FIFO 1 status to DP
);

62 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

Instantiate this datapath as shown in the following example:

4.3.4.3 Control Register

A control register is writable by the CPU. Each of its 8 bits are available in the interconnect routing to
control PLD operations or datapath functionality. Multiple control registers may be defined within a
design but they will act independently.

To instantiate a control register in your design, use the following element instantiation within your
Verilog code.

cy_psoc3_control

This 8-bit control register has the following available parameters, as follows:

 cy_force_order: A Boolean used by the compiler to improve ability of the router if order of the bits
within the register is not required. The default value is False. Typically the order is important and
this should be set to TRUE.

 cy_init_value: The initial value for the register to be loaded during chip configuration.

 cy_ctrl_mode_1, cy_ctrl_mode_0 (PSoC 3 ES3 Only): These two parameters are optional.
Together they control which of the three modes of operation are to be used for each bit of the
control register. Refer to the TRM for details about each of the modes:

cy_ctrl_mode_1 cy_ctrl_mode_0 Description

0 0 Direct mode (default)

0 1 Sync mode

1 0 Reserved

1 1 Pulse mode

cy_psoc3_dp32 DatapathName(
 /* input */ .clk(), // Clock
 /* input [02:00] */ .cs_addr(), // Dynamic Configuration RAM address
 /* input */ .route_si(), // Shift in from routing
 /* input */ .route_ci(), // Carry in from routing
 /* input */ .f0_load(), // Load FIFO 0
 /* input */ .f1_load(), // Load FIFO 1
 /* input */ .d0_load(), // Load Data Register 0
 /* input */ .d1_load(), // Load Data Register 1
 /* output [03:00] */ .ce0(), // Accumulator 0 = Data register 0
 /* output [03:00] */ .cl0(), // Accumulator 0 < Data register 0
 /* output [03:00] */ .z0(), // Accumulator 0 = 0
 /* output [03:00] */ .ff0(), // Accumulator 0 = FF
 /* output [03:00] */ .ce1(), // Accumulator [0|1] = Data register 1
 /* output [03:00] */ .cl1(), // Accumulator [0|1] < Data register 1
 /* output [03:00] */ .z1(), // Accumulator 1 = 0
 /* output [03:00] */ .ff1(), // Accumulator 1 = FF
 /* output [03:00] */ .ov_msb(), // Operation over flow
 /* output [03:00] */ .co_msb(), // Carry out
 /* output [03:00] */ .cmsb(), // Carry out
 /* output [03:00] */ .so(), // Shift out
 /* output [03:00] */ .f0_bus_stat(), // FIFO 0 status to uP
 /* output [03:00] */ .f0_blk_stat(), // FIFO 0 status to DP
 /* output [03:00] */ .f1_bus_stat(), // FIFO 1 status to uP
 /* output [03:00] */ .f1_blk_stat() // FIFO 1 status to DP
);

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 63

Adding an Implementation

Instantiate this control register as shown in the following examples:

Without Optional Mode Parameter:

With Optional Mode Parameter:

4.3.4.4 Status Register

A status register is readable by the CPU. Each of its 8 bits are available in the interconnect routing to
provide status from the PLDs or datapaths. An adaptation of the 8-bit status register is also
implemented, which allows for 7 bits of status and the 8th bit is used as an interrupt source by
OR’ing together the masked output of the other 7 bits. This is shown in the cy_psoc3_statusi
module. Multiple status registers may be defined within a design but they will act independently.

To instantiate a status register in your design, use one of the following module instantiations within
your Verilog code.

cy_psoc3_status

This is an 8-bit status register. The element has the following available parameters. These should be
passed as named parameters as shown in the example instantiation:

 cy_force_order: A Boolean used by the compiler to improve ability of the router if order of the bits
within the register is not required. The default value is False. Typically the order is important and
this should be set to TRUE.

 cy_md_select: A mode definition for each of the bits in the register. The bits represent transparent
or sticky. The default value is transparent for each bit.

Instantiate this status register as shown in the following example:

cy_psoc3_control #(.cy_init_value (8'b00000000), .cy_force_order(`TRUE))
ControlRegName(
 /* output [07:00] */ .control()
);

cy_psoc3_control #(.cy_init_value (8'b00000000), .cy_force_order(`TRUE), .cy_ctrl_-
mode_1(8'b00000000), .cy_ctrl_mode_0(8'b11111111)) ControlRegName(
 /* output [07:00] */ .control(), // Control bits
 /* input */ .clock() // Clock used for Sync or Pulse modes
);

cy_psoc3_status #(.cy_force_order(`TRUE), .cy_md_select(8'b00000000)) StatusRegName (
 /* input [07:00] */ .status(), // Status Bits
 /* input */ .reset(), // Reset from interconnect
 /* input */ .clock() // Clock used for registering data
);

64 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

cy_psoc3_statusi

This module is a 7-bit status register with an interrupt output based on those 7 status bits.

For the statusi register, there is a hardware enable and a software enable. Both enables must be
enabled to generate an interrupt. The software enable is in the Aux Control register. Note that
multiple bits in the Aux Control register can be for different Components, so an interrupt safe
implementation should be done using Critical Region APIs. See the following for an example

#define MYSTATUSI_AUX_CTL (* (reg8 *) MyInstance__STATUS_AUX_CTL_REG)
uint8 interruptState;

/* Enter critical section */
interruptState = CyEnterCriticalSection();
/* Set the Interrupt Enable bit */
MYSTATUSI_AUX_CTL |= (1 << 4);
/* Exit critical section */
CyExitCriticalSection(interruptState);

The module has the following parameters which should be passed as named parameters as shown
in the example instantiation:

 cy_force_order: A Boolean used by the compiler to improve ability of the router if order of the bits
within the register is not required. The default value is False. Typically the order is important and
this should be set to TRUE.

 cy_md_select: A mode definition for each of the bits in the register. The bits represent transparent
or sticky. The default value is transparent for each bit.

 cy_int_mask: A mask register to select which bits are included in the generation of any of the 7
bits of the register. The default value is 0, which disables all 7 bits as interrupt generators.

Instantiate this status register as shown in the following example:

cy_psoc3_statusi #(.cy_force_order(`TRUE), .cy_md_select(7'b0000000),
.cy_int_mask(7’b1111111)) StatusRegName (
 /* input [06:00] */ .status(), // Status Bits
 /* input */ .reset(), // Reset from interconnect
 /* input */ .clock(), // Clock used for registering data
 /* output */ .interrupt() // Interrupt signal (route to Int Ctrl)
);

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 65

Adding an Implementation

4.3.4.5 Count7

A simple 7-bit counter is available to avoid using up a whole 8-bit datapath or multiple PLDs to
implement the same. This element uses other resources within the architecture to avoid using up the
more precious PLD and datapaths. If your counter is between 3 and 7 bits then this module will save
PLD or datapath resources. An example of where this counter is useful is as a bit counter for
communication interfaces where you need a 4-bit counter which would tie up one whole datapath or
one whole 4-macrocell PLD.

For the count7 counter, there is a hardware enable and a software enable. Both enables must be
enabled to get the count7 counter to count. The software enable is in the Aux Control register. Note
that multiple bits in the Aux Control register can be for different Components, so an interrupt safe
implementation should be done using Critical Region APIs. See the following for an example:

#define MYCOUNT7_AUX_CTL (* (reg8 *) MyInstance__CONTROL_AUX_CTL_REG)
uint8 interruptState;

/* Enter critical section */
interruptState = CyEnterCriticalSection();

/* Set the Count Start bit */
MYCOUNT7_AUX_CTL |= (1 << 5);

/* Exit critical section */
CyExitCriticalSection(interruptState);

cy_psoc3_count7

This element has the following available parameters which should be passed as named parameters
as shown in the example instantiation:

 cy_period: A 7-bit period value. Default value is 7’b1111111.

 cy_route_ld: A Boolean to enable a routed signal as a load signal to the counter. If false terminal
count reloads the counter with the period value passed as a parameter, if true either terminal
count or the load signal will load the counter. Default is `FALSE.

 cy_route_en: A Boolean to enable a routed signal as an enable to the counter. If false then the
counter is always enabled, if true then the counter is only enabled while the enable input is high.
Default is `FALSE.

Instantiate this counter as shown in the following example:

cy_psoc3_count7 #(.cy_period(7'b1111111), .cy_route_ld(`FALSE), .cy_route_en(`FALSE))
Counter7Name (
 /* input */ .clock (), // Clock
 /* input */ .reset(), // Reset
 /* input */ .load(), // Load signal used if cy_route_ld = TRUE
 /* input */ .enable(), // Enable signal used if cy_route_en = TRUE
 /* output [6:0] */ .count(), // Counter value output
 /* output */ .tc() // Terminal Count output
);

66 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

4.3.5 Fixed Blocks

For all fixed blocks, a parameter of cy_registers is available to allow you to explicitly set the values
for the given registers for the block. The values listed will be included in the configuration bitstream
generated to program the part, which will be established before the main() function is called. The
value for the parameter is a string which is expected to have a format of:

.cy_registers("reg_name=0x##[,reg_name=0x##]");

Where reg_name is the name of a register in the block as listed in the TRM, such as the CR1
register of the DSM. The value after the = is expected to be the hexadecimal value to be assigned to
the register (the leading 0x is optional, but the value is always interpreted as hexadecimal). In the
case where a register listed is one that is also configured by the fitter, the value listed in the
parameter will take precedence.

4.3.6 Design-Wide Resources

Some Components are considered part of design-wide resources and are not included in Verilog
files, such as:

 Interrupt Controller

 DMA Request

4.3.7 When to use Cypress Provided Primitives instead of Logic

 Register that needs to be accessed from the CPU

 Most ALU operations especially if it is wider than 4 bits

 Shifting operations especially if it is wider than 4 bits

 Masking operations especially if it is wider than 4 bits

 Counter operations especially if it is wider than 4 bits

4.3.8 Warp Features for Component Creation

PSoC Creator Components may use Verilog to define the digital hardware of the system. This
Verilog supports the standards used in Verilog 2001.

4.3.8.1 Generate Statements

The ability to use generate statements is key to Component development in UDB-based PSoC
devices because you cannot use the `ifdef statement to work with parameterized values in your
Verilog file. For example, you may want to remove a datapath if the parameter set by the user
requests an 8-bit wide data bus. This can be handled with a conditional generate statement. Warp
supports Conditional and For-loop generate statements which can surround Verilog code.

Note It is important to remember scope when trying to define nets inside of a generate statement.

Note Generate statements add a layer to the naming convention passed to the API (in the generated
cyfitter.h file) from the datapaths and control and status registers. If you use a generate statement
with a “begin : GenerateSlice” statement then the Components are now pushed down one level in
their naming. For example a datapath named “DatapathName” that is not inside of a generate
statement will have the following variables defined in the cyfitter.h file.

#define ‘$INSTANCE_NAME_DatapathName_u0_A0_REG 0
#define ‘$INSTANCE_NAME_DatapathName_u0_A1_REG 0
#define ‘$INSTANCE_NAME_DatapathName_u0_D0_REG 0

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 67

Adding an Implementation

#define ‘$INSTANCE_NAME_DatapathName_u0_D1_REG 0

But if that same datapath is inside of the “GenerateSlice” generate statement the same variables will
be defined in cyfitter.h as

#define ‘$INSTANCE_NAME_GenerateSlice_DatapathName_u0_A0_REG 0
#define ‘$INSTANCE_NAME_GenerateSlice_DatapathName_u0_A1_REG 0
#define ‘$INSTANCE_NAME_GenerateSlice_DatapathName_u0_D0_REG 0
#define ‘$INSTANCE_NAME_GenerateSlice_DatapathName_u0_D1_REG 0

For Loop Generate Example

Conditional Generate Example

Parameter Usage

Parameters are allowed in the right hand side of a parameter assignment. This is critical for
Component development particularly when assigning the datapath configuration information. For
example, the SPI Component requires the ability to set the number of data-bits dynamically at build
time. The MSB value bit-field of the datapath’s configuration requires a different value based on the
data-width of the SPI transfer. A parameter called MSBVal can be defined which is assigned based
on the existing parameter NumBits which defines the transfer size of the block. The method to do
this is provided in the datapath configuration tool. For datapath configuration you should not be
hand-editing the parameters passed to a datapath. But you may use this method in any other
parameter definitions at your discretion.

localparam Usage and Named Parameters

Parameters are widely used in Components because of the configurable nature of them in PSoC
Creator. It is important to protect your parameters so they are not accidentally overwritten with
unexpected values. For this to work there are two features in the PSoC Creator version of Warp.
These are the support of localparams and passing named parameters.

Defparam usage is very error prone so Warp has added the support of named parameter passing.
This is used extensively as shown in the standard modules defined in previous sections. Named
parameters are passed at the instance declaration time within the #(…) block as shown in the
following example:

genvar i;
generate
for (i=0; i < 4; i=i+1) begin : GenerateSlice

. . . Any Verilog Code using i
 end
endgenerate

generate
if(Condition==true) begin : GenerateSlice

. . . Any Verilog Code
 end
endgenerate

cy_psoc3_status #(.cy_force_order(`TRUE)) StatusReg (
. . . status register isntantiation

68 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

You can and should also protect your parameters with local parameters as much as possible. In the
example above for SPI, MSBVal should be defined as a local parameter because it is set based on
the parameter NumBits. It cannot be set by the user at a higher level. The code for this example
would look like the following:

4.4 Implement with Software

Implementing with software is simply omitting the references for hardware. You would not use a
schematic or Verilog; just software files. Everything else in the process would be the same as any
other type of Component.

One example of a software only Component might be an interface that links the code of several
Components.

module SPI(...)
parameter NumBits = 5'd8;
localparam MSBVal = (NumBits == 8 || NumBits == 16) ? 5'd8 :
 (NumBits == 7 || NumBits == 15) ? 5'd7 :
 (NumBits == 6 || NumBits == 14) ? 5'd6 :
 (NumBits == 5 || NumBits == 13) ? 5'd5 :
 (NumBits == 4 || NumBits == 12) ? 5'd4 :
 (NumBits == 3 || NumBits == 11) ? 5'd3 :
 (NumBits == 2 || NumBits == 10) ? 5'd2 :
 (NumBits == 9) ? 5'd1;
endmodule

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 69

Adding an Implementation

4.5 Exclude a Component

Along with creating implementations for a specific family, series, or device, you can exclude the
Component as well. Excluding a Component means it will not be shown in the catalog or available
for use for a specified family, series, or device.

Note A specific implementation will override the exclude file. For example, if you exclude an entire
family, but create an implementation for a specific series or device, the Component will be available
for that family or device.

To exclude a Component, add an exclude file to your Component as follows:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Scroll down to the Misc section and select the Exclude File icon.

3. De-select the Target generic device to specify the Family, Series, and/or Device using the drop
down menus, or leave the check box selected to allow the Component to apply to all devices.

4. Click Create New.

In the Workspace Explorer, the exclude is listed in the appropriate directory, depending on the
Target option specified.

When you finish this Component and try to use it in a design, select the appropriate family, series,
and/or device for which you added the exclude file, and verify that the Component is not available.

70 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding an Implementation

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 71

5. Simulating the Hardware

Cypress provides functional simulation models with PSoC Creator for Component developers to
simulate and debug their designs. This chapter provides a how-to-guide to help you understand how
CPU accesses (reads and writes) to various elements should be done.

5.1 Simulation Environment

Synthesis of Verilog source designs is made possible with Warp. Although Cypress does not at this
time provide a Verilog simulator, some system files necessary for third party simulators to provide
pre-synthesis simulations are available. Warp uses two source files to accomplish the synthesis of
Verilog designs: lpm.v and rtl.v. These files are located in the following directory:

$CYPRESS_DIR/lib/common/

In this chapter, $CYPRESS_DIR is $INSTALL_DIR/warp/.

The lpm.v file is used to define certain values for the parameters used by the Library of
Parameterized Modules (LPM) in the library. The rtl.v file is used to define various primitives used by
the synthesis engine to map to the internal architecture of the targeted devices.

Also included in this directory is the cypress.v file, which links the design to the appropriate PSoC
models. When using these models for synthesis, the following lines must be present in the user’s
source design:

‘include “cypress.v” //to use the PSoC-specific modules
‘include “lpm.v” //to use the LPM modules
‘include “rtl.v” //to use the RTL modules in the user’s design

For Verilog simulators, use the +incdir+ switch. For example:

+incdir+$CYPRESS_DIR/lib/common

or

+incdir+$CYPRESS_DIR/lib/sim/presynth/vlg

The latter example is valid since the Verilog source files are also mirrored at $CYPRESS_DIR/lib/
sim/presynth/vlg for convenience and compatibility with the Verilog pre-synthesis file structure.

Typically, the invocation of a Verilog simulator that utilizes these collections of modules would be:

vlog +incdir+$CYPRESS_DIR/lib/common <test bench>.v <testfile>.v

You must use the appropriate ‘include clause to access the desired modules.

72 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Simulating the Hardware

5.2 Model Location

The simulation models distributed with PSoC Creator (via Warp) are located in the Warp portion of
the directory structure, located in:

$CYPRESS_DIR/lib/sim/presynth/vlg

5.3 Test Bench Development

In the simulation environment, a test bench must provide for several functions performed by the CPU
in the physical device. To simulate that functionality, the test bench must contain blocks that drive the
internal signals of the device models.

The device model contains elements that must be clocked, written, and/or read. Provisions were
made in the device models to help with the manipulation of the elements by providing internal signals
(CPU clock) and tasks (read/write) associated with the various elements. The following sections
discuss this functionality and provide several examples.

5.3.1 Providing the CPU Clock

Although the models for the status register, control register, and datapath do not have a pin that is
connected to the CPU clock, it is still necessary to supply such a clock to simulate what happens via
the CPU in the silicon itself. In order to provide for CPU accesses to these Components, an internal
reg has been included in each model. The models affected are the control register
(cy_psoc3_control), both types of status register (cy_psoc3_status and cy_psoc3_statusi), and the
datapath (cy_psoc3_dp). In each of these Components, the signal is named cpu_clock.

5.3.1.1 CPU Clock Example

In this example, there are several levels of hierarchy, but the bottom level (pattern_matcher) is an
instantiation of a cy_psoc3_dp. The cpu_clock reg in that model is therefore manipulated via the
test bench by this initial clause.

// Build the CPU clock generator
reg CPUClock = 0;
localparam cycle = 10;
initial
begin
 while (!done)
 begin
 # (cycle / 2);
 CPUClock <= ~CPUClock;
 ela.matcher.pattern_matcher.cpu_clock = CPUClock;
 end
end

If a design contains more than one control register, status register, or datapath, the clock generator
block should contain several assignment statements (such as the following examples).

ela.matcher.pattern_matcher.cpu_clock = CPUClock;
ela.compress.compressor.cpu_clock = CPUClock;
ela.trigger.PosEdgeReg.cpu_clock = CPUClock;
ela.trigger.NegEdgeReg.cpu_clock = CPUClock;
ela.ELAControl.cpu_clock = CPUClock;

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 73

Simulating the Hardware

5.3.2 Register Access Tasks

Access to the internal registers of the three mentioned Components by the CPU must also be
modeled. To accomplish this, there have been several task functions added to each Component
model. These tasks are detailed in the following list:

cy_psoc3_control: task control_write;
cy_psoc3_status: task status_read;
cy_psoc3_statusi: task status_read;
cy_psoc3_dp: task fifo0_write;
task fifo0_read;
task fifo1_write;
task fifo1_read;
task a0_write;
task a0_read;
task a1_write;
task a1_read;
task d0_write;
task d0_read;
task d1_write;
task d1_read;

These tasks are used to read and write the various registers in their respective Component models.
Each call to any one of these tasks involves a single argument.

 For the write tasks, that argument is the 8-bit data that is to be written to the register.

 For the read tasks, the 8-bit register data will be retuned and assigned to that argument.

Typical calls to these tasks take the form:

// data (value) written to control register
<Component_path>.control_write(value);

// data read from status register and stored in read_data
<Component_path>.status_read(read_data);

The following sections show usage examples:

5.3.2.1 FIFO Write

// Retrieve the data
reg[07:00] r_index;

always @(posedge rd_req or posedge new_cmd)
begin
 if (new_cmd)
 r_index = 0;
 if (rd_req)
 begin
 i2c_slave.data_dp.U0.fifo0_write (slave_mem[r_index]);
 r_index = r_index + 1;
 @(negedge rd_req);
 end
end

74 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Simulating the Hardware

5.3.2.2 FIFO Read

// Get the stuff from the FIFO
reg [07:00] read_data;

always @(posedge Clock)
begin
 if (ela.compress.DataAvailable)
 begin
 ela.compress.compressor.fifo0_read(read_data);
 $write ("%h ", read_data);
 end
end

5.3.2.3 Register Read

// Check the value of the CRC result
reg [15:00] seed_current;

always @(posedge prs.dcfg)
begin
 prs.PRSdp_a.a0_read(seed_current[07:00]);
 prs.PRSdp_a.a1_read(seed_current[15:08]);
end

5.3.2.4 Register Write

// Set up some initial conditions
initial
begin
 my_dp.U0.a0_write(8’hFF);
 my_dp.U0.d1_write(8’h57);
end

5.3.2.5 Status Read

// Check for the process being done.
reg [6:0] done;
always @(clock)
 param_timer.statusi.status_read(done);

5.3.2.6 Control Write

// Do the testing
localparam POS_EDGE = 6’b001010;
localparam NEG_EDGE = 6’b001100;

initial
begin
 ela.trigger.PosEdgeReg.control_write(POS_EDGE);
 ela.trigger.NegEdgeReg.control_write(NEG_EDGE);
end

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 75

6. Adding API Files

This chapter covers the process of adding application programming interface (API) files and code to
a Component, as well as different aspects such as API generation and template expansion.

6.1 API Overview

API files define the Component interface, which provides the various functions and parameters for a
Component. As a Component author, you create API file templates for the Component that become
instance-specific for an end-user.

6.1.1 API generation

API generation is the process by which PSoC Creator creates instance-based code, including the
generation of symbolic constants used to define hardware addresses. The hardware addresses are
a result of placement (one of the steps in the fitter, which is part of the build process).

6.1.2 File Naming

All of the files in the API directory are templates expanded into instance_name-qualified files for
compilation. For example, let the Counter API files be Counter.c, Counter.h, and CounterINT.c.

If there is a top-level Counter Component called foo, then files foo_Counter.c, foo_Counter.h, and
foo_CounterINT.c are generated. If there is a lower-level Counter instance called bar_1_foo, then
files bar_1_foo_Counter.c, bar_1_foo_Counter.h, and bar_1_foo_CounterINT.c are generated.

6.1.3 API Template Expansion

6.1.3.1 Parameters

When creating API template code, you can use any built-in, formal, and local parameter (including
user-defined parameters) for template expansion using either of the following syntax:

‘@<parameter>‘
‘$<parameter>‘

Either syntax is valid, and both expand to provide the specified parameter value. For example:

void `$INSTANCE_NAME`_Start(void);

For a Counter instance named foo_1, this code snippet would expand to:

void foo_1_counter_Start(void);

76 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding API Files

6.1.3.2 User-Defined Types

The following constructs define the mappings for user defined types.

Note A type_name might be defined locally (PARITY) or remotely (UART__PARITY).

Each of those directives results in a sequence of #define statements. For types local to the instance,
the expanded name takes the form:

<path_to_instance>_<keyname>

For borrowed types, the expanded name takes the form:

<path_to_instance>_<Componentname>__<keyname>

Note that the instance name is followed by a single underbar (as in the rest of the API), but the
Component name, if used, is followed by a DOUBLE UNDERBAR (as it is in the rest of the system).
This means that locally defined key values should not conflict with register names.

Example

Component: Fox
Type: Color (RED=1, WHITE=2, BLUE=3)
Also Uses: Rabbit__Species
Component: Rabbit
Type: Species (JACK=1, COTTON=2, JACKALOPE=3, WHITE=4)

A design contains a schematic that contains one instance of Fox named bob. In the API file for bob,
the following lines:

‘#declare_enum Color‘
‘#declare_enum Rabbit_Species‘

expand to:

#define path_to_bob_RED 1
#define path_to_bob_WHITE 2
#define path_to_bob_BLUE 3
#define path_to_bob_Rabbit__JACK 1
#define path_to_bob_Rabbit__COTTON 2
#define path_to_bob_Rabbit__JACKALOPE 3
#define path_to_bob_Rabbit__WHITE 4

In the API file for bob, the following line:

‘#declare_enum_all‘

expands to:

#define path_to_bob_RED 1
#define path_to_bob_WHITE 2
#define path_to_bob_BLUE 3
#define path_to_bob_Rabbit__JACK 1
#define path_to_bob_Rabbit__COTTON 2
#define path_to_bob_Rabbit__JACKALOPE 3
#define path_to_bob_Rabbit__WHITE 4

‘#DECLARE_ENUM type_name‘ – declare the key names defined for the specified typename

‘#DECLARE_ENUM_ALL‘ – declare the key names for all types used by the Component

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 77

Adding API Files

6.1.4 Conditional API Generation

In the specific case of control register, status register, statusi register, or interrupt, if the mapping of
the design to the part determines that the Component is not being used (based on connectivity of the
Component), the mapping process will remove the Component from the mapped design. To inform
the API generation system that the code for the Component is no longer needed, an entry of:

#define `$INSTANCE_NAME`__REMOVED 1

will be generated in cyfitter.h to allow the Component API to be conditionally compiled into the
design. In addition, any code that uses the APIs of the removed Component would need to be
constructed to take advantage of the #define so the removed Component would not be accessed.

6.1.5 Verilog Hierarchy Subsitution

If you are implementing your design using Verilog, you may wish to access various fitter constants
for control registers. PSoC Creator provides a ‘[...]‘ substitution mechanism for hierarchy path
generation for you to access fitter constants. For example:

foo_1`[uart_x,ctrl]`ADDRESS

This code snippet expands to:

foo_1_uart_x_ctrl_ADDRESS

6.1.6 Macro Callbacks

Macro callbacks are specified by Component authors as extension points into Component APIs
where users can (safely) inject new code. The general form should be:

#ifndef NAME_OF_MACROCALLBACK
 NAME_OF_MACROCALLBACK
#endif /* NAME_OF_MACROCALLBACK */

For more information, refer to the PSoC Creator Help.

To use the macro callback, it needs to be defined in a user-defined header file named
cyapiallbacks.h. This file will be included in all generated source files that offer callbacks through the
local built-in parameter named:

CY_API_CALLBACK_HEADER_INCLUDE

See Locals: on page 16 for more information.

Components should not directly #include cyapicallbacks.h. Instead they should do the following:

`=GetApiCallbackHeaderInclude()`

This ensures backward compatibility with older PSoC Creator projects (that don't have
cyapicallbacks.h), and ensures the firmware still builds if the user chooses to remove the
cyapicallbacks.h header file.

6.1.6.1 Multiple Callbacks

It is perfectly acceptable to define multiple callbacks with different argument lists so that users can
implement the one most appropriate to their needs. This requires the Component author to consider
what variables to allow the user to "see" and/or "modify" (by reference).

78 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding API Files

6.1.6.2 User Code

A callback requires the user to complete the following:

 Define a macro to signal the presence of a callback (in cyapiallbacks.h).

 Write the function declaration (in cyapiallbacks.h).

 Write the function implementation (in any user file).

To complete the example, the cyapiallbacks.h file would include this code:

#define SimpleComp_1_START_CALLBACK
void SimpleComp_1_Start_Callback(void);

In any other user file, the user would write the SimpleComp_1_Start_Callback() function.

6.1.6.3 Inlining

The function declaration could be added to the Component source, which would save the user from
having to write the prototype (one line per function). However, by reducing the Component code to
just the call, the user is free to modify the declaration. This is most obviously beneficial with inlining.

Different compilers implement inlining with different syntaxes but they all (that we support) do it on
the function declaration/implementation, and not the call. By extracting the declaration/
implementation from the content code the user has full control over inlining, regardless of the
compiler used.

6.1.7 Optional Merge Region

A merge region defines an area where end-users can write their own code that will be preserved
during future updates of Components and source code. Merge regions are optional. The preferred
method to preserve user code is to use Macro Callbacks.

You define the region using the following syntax:

/* `#START <region name>` */
/* `#END` */

Note The merge region identifier <region name> must be unique.

Anything an end-user places in this region will be preserved in subsequent updates of the file. If a
subsequent version of the file does not contain the same named region, the entire region from the
previous file will be copied to the end of the file and placed in comments.

6.1.8 API Cases

You may specify both an API and a schematic for the Component, or only one of them (only a
Component of type “primitive” may have no schematic and no API). The following lists the possible
cases of APIs that may – or may not – exist:

 A schematic is provided but no API exists

In this case, the Component is nothing but a hierarchical combination of other Components that
needs to be flattened when instantiated in a design.

Note that when the user edits the design-entry document for the generic portion of the Compo-
nent project, no family-specific primitives can be placed into the schematic. Likewise, when the

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 79

Adding API Files

user edits the design-entry document for a family, only the primitives that are applicable for that
particular family are available for placement into a schematic.

 An API exists but no schematic is provided

In this case, the Component does not re-use existing Components and presents an API for use.
This may occur for software-only Components that do not employ other Components.

 Both a schematic and an API are provided.

This is a typical Component with an API and one or more primitives and/or other Components
included in the design. When the schematic includes other instantiated Components that have
their own APIs, the code generation process for a top-level design is somewhat complicated. For
example, consider construction of a Count32 Component from two Count16 Components, with
instance names u1 and u2 in the Count32 generic schematic. When the Count32 Component is
instantiated in a top-level design, the code generation mechanism must be aware of the hierarchy
when generating the APIs.

In this case, the creator of the Count32 Component would need to use u1’s API in the template
code as ‘$INSTANCE_NAME``[u1]`Init().

Note that if the Count16 Component was composed of Count8 Components, for example, with
identical substructure, then their instance names during code generation are hierarchical in
nature as well.

 Neither a schematic nor an API is provided.

This is an invalid configuration except for Components of type “primitive.”

6.2 Add API Files to a Component

Use PSoC Creator to add as many API files as required for the Component:

1. Right click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the icon for the Component item you wish to add.

3. De-select the Target generic device to specify the Family, Series, and/or Device using the drop
down menus, or leave the check box selected to allow the Component to apply to all devices.

4. Type in the Item name.

5. Click Create New.

The Component item displays in the Workspace Explorer. Depending on the target options you
specified, the Component item may be located in a subdirectory.

6. Repeat the process to add more API files.

6.3 Complete the .c file

The .c file contains the function and parameter definitions for your Component. It should include a
reference to the basic Component header file you add to the Component, as shown in the following
example:

#include "`$INSTANCE_NAME`.h"

80 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding API Files

6.4 Complete the .h file

The .h file generally contains the function prototypes for the Component. The header file should
include references to the cyfitter.h and cytypes.h files, which are generated as part of the build. The
cyfitter.h file defines all of the instance specific addresses calculated by the Code Generation step.
The cytypes.h file provides macros and defines to allow code to be written tool chain and processor
(PSoC 3/ PSoC 5) agnostic.

 The following is an example of how to include those files:

#include "cytypes.h"
#include "cyfitter.h"

When the header is generated, there are a few naming conventions used. For working registers
(status, control, period, mask, etc.) the full instance name will be used (including any hierarchy) with
a specified string appended (as shown in the following table):

Working Register Name (Prepend <Instance name>_<GenerateSliceName> for each)

Status _<StatusRegComponentName>__STATUS_REG

Status Auxiliary Control _<StatusAuxCtrlRegComponentName>__STATUS_AUX_CTL_REG

Control _<ControlRegComponentName>__CONTROL_REG

Control Auxiliary Control _<ControlAuxCtrlRegComponentName>__CONTROL_AUX_CTL_REG

Mask _<MaskRegComponentName>__MASK_REG

Period _<PeriodRegComponentName>__PERIOD_REG

Accumulator 0 _<A0RegComponentName>__A0_REG

Accumulator 1 _<A1RegComponentName>__A1_REG

Data 0 _<D0RegComponentName>__D0_REG

Data 1 _<D1RegComponentName>__D1_REG

FIFO 0 _<F0RegComponentName>__F0_REG

FIFO 1 _<F1RegComponentName>__F1_REG

Datapath Auxiliary Control _<DPAuxCtlRegComponentName>__DP_AUX_CTL_REG

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 81

7. Finishing the Component

This chapter covers the various steps involved with finishing the Component, including:

 Add/Create Datasheet

 Add Control File

 Add/Create Debug XML File

 Add/Create DMA Capability File

 Add/Create .cystate XML File

 Add Static Library

 Add Dependency

 Build the project

7.1 Add/Create Datasheet

You can add documentation to your Component in any of PDF, HTML, and XML formats. However, a
Component datasheet must be a PDF file. When a user opens the datasheet from the tool, it will
always open the PDF file associated with the Component. You can create Component datasheets
using MS Word, FrameMaker, or any other type of word processing program. Then, you can convert
that file into PDF, and add it to the Component. The main requirement is that a PDF file must have
the same name as the Component in order to be viewed from the Component Catalog.

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

82 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

2. Select the Document Files icon under the Misc category from the templates, and type the name
of the PDF file to add in Item name.

Note This process applies to any number of miscellaneous files you wish to add to the
Component. Click on a different template icon to add a different file type.

3. Click Create New to allow PSoC Creator to create a dummy file; select Add Existing from the
pull-down to select an existing file to add to the Component.

The item displays in the Workspace Explorer and opens outside of PSoC Creator.

4. If applicable, copy any updates over the file included with the project.

7.2 Add Control File

A control file is used to define fixed placement characteristics for a Component instance. It allows a
Component author to define the target datapath, PLD and status/control register resources. For
more information about control files, refer to the PSoC Creator Help, under in the “Building a PSoC
Creator Project” section. To add a control file:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Control File icon under the Misc category from the templates. The name will be the
same as the Component.

3. Click Create New to allow PSoC Creator to create an empty file; select Add Existing from the
pull-down to select an existing file to add to the Component.

The item displays in the Workspace Explorer and opens as tabbed document in the work area.

When the user enables the feature from the Component Configure dialog, the Component instance
will be forced into the specified resources. Multiple instances are not allowed to use this feature and
attempts to do so will generate an error.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 83

Finishing the Component

7.3 Add/Create Debug XML File

PSoC Creator provides an optional mechanism for creating new debugger tool windows for any
Component. To enable this feature on a specific Component, add an XML description of the
Component. This information can consist of any blocks of memory used or individual registers that
are important to the Component. This debug file is then used in the PSoC Creator Component
Debug window. To learn how to use the Component Debug window, refer to the PSoC Creator Help.

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Debug XML File icon under the Misc category from the templates; the name becomes
the same as the Component, in this case Component_A.cycdx.

3. Click Add Existing to select an existing file to add to the Component; select Create New to allow
PSoC Creator to create a dummy file.

The item displays in the Workspace Explorer and opens as a tabbed document in the PSoC Creator
Code Editor.

7.3.1 XML Format

The following are the major elements and attributes that make up the debug XML files. While the
items listed here should cover everything useful in creating a debug file, the full schema definition
can be found in the following directory of your PSoC Creator installation:

<install location>\PSoC Creator\<Version#>\PSoC Creator\dtd\cyblockregmap.xsd

Like other files in the Component, debug XML files are able to use template expansion (see
Section 6.1.3) to evaluate parameters at build time. Additionally, addresses can be either the actual
address, or a #define from cydevice.h, cydevice_trm.h, or cyfitter.h.

Note The names of items in the XML documents cannot contain spaces.

84 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

Block

The <block> field is used to wrap related registers/memories in a single block. A block can be a
Component instance, a portion of the Component such as UDBs, sub-Components, or an abstract
collection of similar registers or memories. A block must always have a unique name within a
hierarchy. It can optionally provide a description and a block visibility expression.

Memory

The <memory> field represents a contiguous section of memory used by the Component. The
memory section needs a unique name, the starting address of the memory, and the size of that
memory. A <memory> must be placed within a <block>.

Register

The <register> field is used to represent a register used internally by the Component. A <register>
must be placed within a <block>.

Parameter Type Description

name string Defines the block name. This string will be appended to all sub items.

desc string Provides a description of the block.

visible string
Specifies whether the contents of the block are displayed (string evaluates to
bool). Applies to descendants.

hidden string
Specifies whether the contents of the block are hidden (string evaluates to bool).
Applies to the block itself.

Parameter Type Description

name string Defines the name of the section of memory.

desc string Provides a description of the memory section.

BASE string The starting address of the memory section (string evaluates to uint).

SIZE string Number of bytes in the memory section (string evaluates to uint).

hidden string
Specifies whether the contents of the memory section are hidden (string evaluates
to bool).

Parameter Type Description

name string Defines the name of the register.

desc string Provides a description of the register.

address string The address of the register (string evaluates to uint).

size string Number of bits in the register (string evaluates to uint).

hidden -- Specifies whether the contents of the block are displayed (string evaluate to bool)

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 85

Finishing the Component

Field

The <field> is used to define a portion of a register that has a specific meaning. It is a sub-item of
<register> and should not be used outside of it. The definition allows meaning to be placed for the
specific portions of the register when viewed from the Component debug window.

Value

The <value> is used to define a specific value that has meaning to a register field. It is a sub-item of
<field>. A value is an optional helper definition that shows up in the tool tip when a <register> with a
<field> and a <value> is opened in the Component debug window. The definition allows quick
viewing of what values of the specific field mean.

Parameter Type Description

name string Defines the name of the field.

desc string Provides a description of the field.

from string The high order bit for the field (string evaluate to uint).

to string The low order bit for the field (string evaluate to uint).

access string

Defines the type of access available for the register such as read-only (“R”), write-
only (“W”), or read and write (“RW”). Possible values are:

R - Read only

W - Write only

RW - Read/Write

RCLR - Read to clear

RCLRW - Read to clear or write

RWCLR - Read or write to clear

RWOSET - Read or write once to set

RWZCLR - Read or write zero to clear

hidden string
Specifies whether the contents of the field section are hidden (string evaluates to
bool).

Parameter Type Description

name string Defines the name of the value.

desc string Provides a description of the value.

value string Specifies the value in binary string, such as “100”, “0101”, “00”.

86 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

7.3.2 Example XML File

The following is an example debug XML file. Note that all elements must be placed within a <block>
and should follow the restrictions outlined above. The example contains a top level block, which is
the Component instance in the project. It then shows either the UDB implementation or the Fixed
Function implementation of the Component by using the `$FixedFunction` Component parameter.

Note Addresses shown in this example are not actual addresses; they are used here only as a
demonstration.

<?xml version="1.0" encoding="us-ascii"?>

<deviceData version="1"
 xmlns="http://cypress.com/xsd/cydevicedata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://cypress.com/xsd/cydevicedata cydevicedata.xsd">

 <block name="`$INSTANCE_NAME`" desc="Top level">
 <block name="UDB" desc="UDB registers" visible="!`$FixedFunction`">
 <register name="STATUS" address="`$INSTANCE_NAME`_bUDB__STATUS"
bitWidth="8" desc="UDB status reg">
 <field name="GEN" from="7" to="2" access="RW" desc="General status" />
 <field name="SPE" from="1" to="0" access="R" desc="Specific status">
 <value name="VALID" value="01" desc="Denotes valid status" />
 <value name="INVALID" value="10" desc="Denotes invalid status" />
 </field>
 </register>
 <register name="PERIOD" address="`$INSTANCE_NAME`_bUDB__PERIOD"
bitWidth="16" desc="UDB Period value" />
 <memory name="Memory" address="`$INSTANCE_NAME`_bUDB__BUFFER" size="32"
desc="UDB buffer address" />
 </block>
 <block name="FixedFunction" desc="Fixed Function registers"
visible="`$FixedFunction`">
 <register name="STATUS" address="`$INSTANCE_NAME`_bFF__STATUS"
bitWidth="8" desc="FF status reg">
 <field name="SPE" from="0" to="0" access="R" desc="Specific status">
 <value name="VALID" value="0" desc="Denotes valid status" />
 <value name="INVALID" value="1" desc="Denotes invalid status" />
 </field>
 </register>
 <register name="PERIOD" address="`$INSTANCE_NAME`_bFF__PERIOD"
bitWidth="16" desc="FF Period value" />
 <memory name="Memory" address="`$INSTANCE_NAME`_bFF__BUFFER" size="32"
desc="FF buffer address" />
 </block>
 </block>
</deviceData>

For additional examples, look at the Components shipped with PSoC Creator (e.g., I2C). These are
located in the following directory of your PSoC Creator installation:

<install location>\PSoC Creator\<Version#>\PSoC Creator\psoc\content

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 87

Finishing the Component

7.3.3 Example Windows

The following sections show the different Debug windows that can be generated via the XML files.
For each window shown, the relevant section of the XML file is also shown to indicate what is
needed to get it. All examples here are from the Timer_v2_50 Component.

7.3.3.1 Select Component Instance Debug Window

This window is where the user selects the debug window for the specific instance.

<?xml version="1.0" encoding="us-ascii"?>

<deviceData version="1"
 xmlns="http://cypress.com/xsd/cydevicedata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://cypress.com/xsd/cydevicedata
cydevicedata.xsd">

 <block name="`$INSTANCE_NAME`" desc="" visible="true">
 …
 </block>
</deviceData>

88 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

7.3.3.2 Component Instance Debug Window

This window shows the specific instance debug information.

<?xml version="1.0" encoding="us-ascii"?>

<deviceData version="1"
 xmlns="http://cypress.com/xsd/cydevicedata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://cypress.com/xsd/cydevicedata cydevicedata.xsd">

 <block name="`$INSTANCE_NAME`" desc="" visible="true">

 <block name="`$INSTANCE_NAME`" desc="" visible="`$FF8`">
 <!-- Fixed Function Configuration Specific Registers -->
 <register name="CONTROL"
 address="`$INSTANCE_NAME`_TimerHW__CFG0" bitWidth="8" desc="TMRx.CFG0">
 …
 </register>
 <register name="CONTROL2"
 address="`$INSTANCE_NAME`_TimerHW__CFG1" bitWidth="8" desc="TMRx.CFG1">
 …
 </register>
 <register name="PERIOD"
 address="`$INSTANCE_NAME`_TimerHW__PER0" bitWidth="8" desc="TMRx.PER0 -
Assigned Period">
 </register>
 <register name="COUNTER"
 address="`$INSTANCE_NAME`_TimerHW__CNT_CMP0" bitWidth="8"
desc="TMRx.CNT_CMP0 - Current Down Counter Value">
 </register>
 <register name="GLOBAL_ENABLE"
 address="`$INSTANCE_NAME`_TimerHW__PM_ACT_CFG" bitWidth="8"
desc="PM.ACT.CFG">
 <field name="en_timer" from="3" to="0" access="RW" desc="Enable
timer/counters.">
 </field>
 </register>
 </block>
 …

 </block>
</deviceData>

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 89

Finishing the Component

For the address field, the Component uses the Cypress template substitution mechanism to allow
this to work for any Component name, as well as the ability to look up any value defined in
cydevice_trm.h or cyfitter.h. In this case, it used a define from cyfitter.h which allows it to function
independent of where the tool ended up placing the timer.

7.3.4 Registers Window

This window shows selected register details.

90 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

…
 <block name="`$INSTANCE_NAME`_CONTROL3" desc=""
visible="`$CONTROL3`">
 <!-- UDB Parameter Specific Registers -->
 <register name=""
 address="`$INSTANCE_NAME`_TimerHW__CFG2" bitWidth="8"
desc="TMRx.CFG2">
 <field name="TMR_CFG" from="1" to="0" access="RW"
desc="Timer configuration (MODE = 0): 000 = Continuous; 001 =
Pulsewidth; 010 = Period; 011 = Stop on IRQ">
 <value name="Continuous" value="0" desc="Timer runs
while EN bit of CFG0 register is set to '1'." />
 <value name="Pulsewidth" value="1" desc="Timer runs from
positive to negative edge of TIMEREN." />
 <value name="Period" value="10" desc="Timer runs from
positive to positive edge of TIMEREN." />
 <value name="Irq" value="11" desc="Timer runs until
IRQ." />
 </field>
 <field name="COD" from="2" to="2" access="RW" desc="Clear On
Disable (COD). Clears or gates outputs to zero.">
 </field>
 <field name="ROD" from="3" to="3" access="RW" desc="Reset On
Disable (ROD). Resets internal state of output logic">
 </field>
 <field name="CMP_CFG" from="6" to="4" access="RW"
desc="Comparator configurations">
 <value name="Equal" value="0" desc="Compare Equal " />
 <value name="Less than" value="1" desc="Compare Less
Than " />
 <value name="Less than or equal" value="10"
desc="Compare Less Than or Equal ." />
 <value name="Greater" value="11" desc="Compare Greater
Than ." />
 <value name="Greater than or equal" value="100"
desc="Compare Greater Than or Equal " />
 </field>
 <field name="HW_EN" from="7" to="7" access="RW" desc="When
set Timer Enable controls counting.">
 </field>
 </register>
 </block>
…

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 91

Finishing the Component

7.4 Add/Create DMA Capability File

The DMA capability file allows your Component to use the PSoC Creator DMA wizard. The DMA
Wizard simplifies configuring DMA for moving data quickly and reliably between sources and
destinations.

7.4.1 Adding a DMA Capability File to a Component:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the DMA Capability icon under the Misc category from the templates; the name becomes
the same as the Component.

3. Click Add Existing to select an existing file to add to the Component; select Create New to allow
PSoC Creator to create a dummy file.

The item displays in the Workspace Explorer and opens as a tabbed document in the PSoC
Creator Code Editor.

7.4.2 Editing Component Header File:

Generate human-readable source and destination addresses in the Component header file. This
step is optional, but it enhances the user experience by providing logical names for memory
locations. For example, FIFO 0 stores the result from a Component that calculates something. You
could use the generic “<Component>_long_name_F0_REG” define provided in the cyfitter.h file, or
you could rename it to something more useful, such as: “MyComponent_Result_PTR”. The user will
see MyComponent_Result_PTR in the DMA wizard, and it will make using the tool easier.

If you have registers that are part of the hardware, you can find generic register definitions in the
cyfitter.h file. These definitions will always be updated with the proper address regardless of where
your Component pieces are placed by PSoC Creator. To see what you have available, build a test
project with your Component in it, then open the generated cyfitter.h file. The following is an
example:

/* X_UDB_OffsetMix_1 */
#define X_UDB_OffsetMix_1_OffsetMixer_LSB__16BIT_DP_AUX_CTL_REG CYREG_B0_UDB10_11_ACTL
#define X_UDB_OffsetMix_1_OffsetMixer_LSB__16BIT_F0_REG CYREG_B0_UDB10_11_F0
#define X_UDB_OffsetMix_1_OffsetMixer_LSB__16BIT_F1_REG CYREG_B0_UDB10_11_F1
…

You can use the definition shown in red in your header file to redefine the abstract
X_UDB_OffsetMix_1_OffsetMixer_LSB__16BIT_F0_REG into something more human
friendly. For example:

Header File:

#define `$INSTANCE_NAME`_OUTPUT_PTR ((reg16 *) `$INSTANCE_NAME`_OffsetMixer_LSB
__16BIT_F0_REG)

#define `$INSTANCE_NAME`_OUTPUT_LOW_PTR ((reg8 *) `$INSTANCE_NAME`_OffsetMixer_LSB
__F0_REG)

#define `$INSTANCE_NAME`_OUTPUT_HIGH_PTR ((reg8 *) `$INSTANCE_NAME`_OffsetMixer_MSB
__F0_REG)

You now have a define `$INSTANCE_NAME_OUTPUT_PTR` to use anywhere; not only for the DMA
Wizard, but for API and Component usage in general.

92 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

7.4.3 Completing the DMA Capability File:

The DMA capability file includes a large block of comments at the beginning to help understand the
file.

Note Comments in the DMA Capability file are surrounded by ‘<!--‘ and ‘-->’. For example:

<!-- Text between brackets on one line
or more
will be commented out -->

The beginning of the DMA Capability file looks like the following:

<DMACapability>
 <Category name=""

enabled=""
bytes_in_burst=”"
bytes_in_burst_is_strict=""
spoke_width=""
inc_addr=""
each_burst_req_request="">

 <Location name="" enabled="true" direction=""/>
 </Category>
</DMACapability>

The following sections describe how each field impacts the DMA Wizard:

7.4.3.1 Category Name

You can have one or more categories.

 If you have one category, the DMA Wizard will only show your Component name when selecting
source and destination.
<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 93

Finishing the Component

 If you have multiple categories, when your Component is selected in the source and destination,
another drop-down menu will appear listing the available categories.
<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>

 <Category name="Catagory 2, 4 byte not strict"
enabled="true"
bytes_in_burst="4"
bytes_in_burst_is_strict="false"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_2" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

7.4.3.2 Enabled

The enable field can be set to “true” or “false”, or it can use a parameter passed from the customizer.
This can be used to enable or disable categories depending on features enabled or disabled in the
customizer. The syntax is such that you replace the content between the quotation marks with
`=$YourParameterName` [include the back ticks (`)].

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="`=$EnableDMA`"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

94 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

Note Any field in the DMA Capability file can be replaced with a parameter using the same syntax.
You can also use Boolean expressions in these fields to produce more complex results. For
example:

enabled="`=$EnableExtraDest && $EnableExtraLocations`"

7.4.3.3 Bytes In Burst

The bytes_in_burst parameter sets the initial value of the “Bytes per Burst” box in the DMA Wizard
and can be from 0 to 127. This can either be a “Strict requirement” (the bytes per bust must be the
value specified) or a maximum number of bytes per burst.

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="31"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 95

Finishing the Component

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

The user can override this setting by checking the Set Manually box. However, the tool will display
an error if the value is over the maximum or go outside the “Strict” value:

This setting can also be a parameter from a customizer. Use a type of “uint8” with the customizer
validator set to restrict the range from “0” to “127”.

bytes_in_burst="`=$Bytes`"

7.4.3.4 Bytes in Burst is Strict

When “bytes_in_burst_is_strict” is set to “true”, this field specifies if the value “bytes_in_burst” is a
required value that should not deviate from the value specified. When set to “false” the value of
“bytes_in_burst” is used to set to set an upper limit on the bytes per burst.

The user can always select Set Manually in the DMA wizard and override these settings, regardless
of the value of the strict setting. However, there will be a warning.

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="31"
bytes_in_burst_is_strict="true"
spoke_width="2"

96 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

7.4.3.5 Spoke Width

The “spoke_width” field is the spoke width (in the number of bytes) that the source/destination
register resides on. The recommendation is to set to the spoke width associated with the source/
destination registers. The spoke widths can be found in the TRM under the heading PHUB and
DMAC. The following table is copied from the TRM:

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="`=$Bytes`"
bytes_in_burst_is_strict="false"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 97

Finishing the Component

7.4.3.6 Inc Addr

The “inc_addr” field sets the initial check box state of the “increment source address” or “increment
destination address” on the second page of the DMA Wizard (Transaction Descriptor or TD
configuration).

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

If the “direction” field of the location entry (see Location Name on page 98) is set to “destination”
then when the “inc_addr” field is set to true, the Destination Inc check box will be checked instead
of the Source Inc check box.

7.4.3.7 Each Burst Requires A Request

The “each_burst_requires_a_request” field specifies the initial value of the Each Burst Requires a
Request check box in the DMA Wizard under the burst setting field.

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="false">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

98 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

As with other fields, the user can check the Set Manually check box to override the initial setting,
regardless of the value of the “each_burst_requires_a_request” field.

7.4.3.8 Location Name

The “Location” fields are the actual addresses that will be used in the TD configuration window. You
may have one or more “Location” field in each category.

Note The syntax for the register name is slightly different than for a parameter.

 If you only have one location in a category, then this location will automatically be populated in
the appropriate source/destination location in the TD configuration window.
<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true"
direction="source"/>

 </Category>
</DMACapability>

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 99

Finishing the Component

 If you have multiple locations in the category, you will be given a choice from a drop down box
containing all the listed locations.
<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_AWESOME_DATA_PTR" enabled="true"
direction="source"/>

 <Location name="`$INSTANCE_NAME`_WOOT_PTR" enabled="true" direction="source"/>
 <Location name="`$INSTANCE_NAME`_FOOBAR_PTR" enabled="true" direction="source"/>
 </Category>
</DMACapability>

Enabled

If the location is enabled by setting this field to “true”, then the entry will appear in the TD
configuration window. If the location is set to “false” then the location will not show up in the list of
options. This can be used to selectively enable / disable options based on parameters set in the
customizer. The syntax is the same for the other fields:

enabled="`=$EnableLocationAwesome`"

100 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

Direction

The “direction” field sets the location as “source”, “destination” or “both”. This setting impacts where
the category will appear in the DMA wizard, as well as where the location and increment address will
go.

<DMACapability>
 <Category name="Catagory 1, 1 byte strict"

enabled="true"
bytes_in_burst="1"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_AWESOME_DATA_PTR" enabled="true"
direction="destination"/>

 <Location name="`$INSTANCE_NAME`_WOOT_PTR" enabled="true" direction="destination"/>
 <Location name="`$INSTANCE_NAME`_FOOBAR_PTR" enabled="true" direction="destination"/

>
 </Category>

 <Category name="Catagory 2, 2 byte strict"
 enabled="true"
 bytes_in_burst="2"
 bytes_in_burst_is_strict="true"
 spoke_width="2"
 inc_addr="false"
 each_burst_req_request="true">
 <Location name="`$INSTANCE_NAME`_AWESOME_DATA_PTR" enabled="true"

direction="destination"/>
 <Location name="`$INSTANCE_NAME`_WOOT_PTR" enabled="true" direction="destination"/>
 <Location name="`$INSTANCE_NAME`_FOOBAR_PTR" enabled="true" direction="destination"/

>
 </Category>
</DMACapability>

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 101

Finishing the Component

7.4.4 Example DMA Capability File:
<!--
DMACapability needs to contain 1 or more Category tags. Category needs to contain 1 or more Location tags.
Category Attributes
===================
name: The name of the cataegory to display to the user in the DMA Wizard. (If only one category is entered
it will not be displayed as a sub-category in the wizard. Instead it will just be used when the
user selects its associated instance.)
enabled: [OPTIONAL] "true" or "false". If not provided it defaults to true. If false,
this category and its locations are not included in the DMA Wizard. Note: this value can be set
to an expression referencing parameters i.e. enabled=”`=$Your Expression here`”.
bytes_in_burst: Integer between 1 and 127. The number of bytes that can be sent/received in a single burst.
bytes_in_burst_is_strict: "true" or "false". Determines whether the bytes_in_burst is a maximum value (false)
or a specific value that must be used (true).
spoke_width: Integer between 1 and 4. The spoke width in bytes.
inc_addr: "true" or "false". Specifies whether or not the address is typically incremented.
each_busrt_req_request: "true" or "false". Specifies whether or not a request is required for each burst.
Location Attributes
===================
name: The name of the location to display to the user in the DMA Wizard.
enabled: [OPTIONAL] "true" or "false". If not provided it defaults to true. If false, this
location is not included in the DMA Wizard. Note: this value can be set to an expression
referencing parameters by using: enabled=”`=$Your Expression here`”.
direction: "source", "destination", or "both".
-->
<DMACapability>
 <Category name="Catagory 1, variable byte strict"

enabled="true"
bytes_in_burst="`=$Bytes`"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="false"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_1" enabled="true" direction="source"/>
 <Location name="`$INSTANCE_NAME`_location_2_cat_1" enabled="true" direction="source"/>
 <Location name="`$INSTANCE_NAME`_location_3_cat_1" enabled="true" direction="source"/>
 </Category>

<!-- blah blah blah -->

 <Category name="Catagory 4 optional, , 4 byte strict"
enabled="`=$EnableExtraDest`"
bytes_in_burst="4"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_4" enabled="true" direction="destination"/>
 <Location name="`$INSTANCE_NAME`_location_2_cat_4" enabled="`=$EnableExtraDest && $EnableExtraLocations`"
direction="destination"/>

102 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

 <Location name="`$INSTANCE_NAME`_location_3_cat_4" enabled="`=$EnableExtraDest && $EnableExtraLocations`"
direction="destination"/>
 </Category>

 <Category name="Catagory 2, 4 byte not strict"
enabled="true"
bytes_in_burst="4"
bytes_in_burst_is_strict="false"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_2" enabled="true" direction="source"/>
 <Location name="`$INSTANCE_NAME`_location_2_cat_2" enabled="true" direction="source"/>
 <Location name="`$INSTANCE_NAME`_location_3_cat_2" enabled="true" direction="source"/>
 </Category>

 <Category name="Catagory 3, 2 byte strict"
enabled="true"
bytes_in_burst="2"
bytes_in_burst_is_strict="true"
spoke_width="2"
inc_addr="true"
each_burst_req_request="true">

 <Location name="`$INSTANCE_NAME`_location_1_cat_3" enabled="true" direction="destination"/>
 <Location name="`$INSTANCE_NAME`_location_2_cat_3" enabled="true" direction="destination"/>
 <Location name="`$INSTANCE_NAME`_location_3_cat_3" enabled="true" direction="both"/>
 <Location name="`$INSTANCE_NAME`_location_3_cat_3" enabled="true" direction="both"/>
 </Category>
</DMACapability>

7.5 Add/Create .cystate XML File

By adding a .cystate XML file, you can provide Component state information to your Components.
This optional feature is used to generate DRC errors, warnings, and notes if a Component is not of
production quality, or if the Component is used with incompatible versions of silicon. If you do not
include a .cystate file, and/or if you do not use entries for a targeted device, then no DRCs will be
generated.

Note Any changes you make to the .cystate file won't take effect until PSoC Creator has been
restarted.

7.5.1 Adding the .cystate File to a Component

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the Misc. File icon under the Misc category from the templates.

3. For the name, enter the same name as the Component with a .cystate extension (for example,
cy_clock_v1_50.cystate).

4. Click Create New to create an empty file; select Add Existing to select an existing file to add to
the Component.

The item displays in the Workspace Explorer and opens as a tabbed document in the PSoC
Creator Code Editor.

7.5.2 States

In general, Components can be in one of three states: obsolete, production, or prototype.

 Obsolete defines a Component as not recommended for use.

 Production defines a Component as fully-tested and warranted for use in production designs.

 Prototype refers to everything else. There are two common uses: beta releases and example
content.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 103

Finishing the Component

7.5.3 State Messaging

The .cystate file supports the display of messages in the Notice List window with options for the type
and the message.

7.5.3.1 Notice Type

The type of message can be one of the following:

 Error terminates a build

 Warning is a serious message, but does not stop the build

 Note is a relatively low-risk informational message.

7.5.3.2 Default Message

PSoC Creator has default messages for Prototype and Obsolete states. The Component can
override these defaults by providing its own string.

 For a Prototype Component, unless overridden, the tool reports:

The COMPONENT_NAME (INSTANCE_NAME) is a Prototype Component. It has not been
tested to production quality and care should be taken if used in a shipping product.

 For an Obsolete Component, unless overridden, the tool reports:

The COMPONENT_NAME (INSTANCE_NAME) is an Obsolete Component. It is no longer
recommended for use and should be replaced with a production version of the Component (or an
alternative implementation).

7.5.4 Best Practices

The following is the policy used for Cypress Components, and what Cypress recommends be used
for all Components.

 Production Components should generate no messages from the tool.

 Obsolete Components should generate either warnings or errors.

The intention is to aggressively remove obsolete Components them from user designs. When
making a Component obsolete, use a warning in the first release. Then upgrade the message to
an error in the next. This ensures you do not break older designs without warning.\

In most cases it is recommended that the default message be overridden to direct the user to a
better solution (that is, direct them to a specific new version or a new Component).

 Prototype Components should generate either notes or warnings.

Unless there are known defects, a Prototype Component should issue a note with the default
message. If a defect is found, then elevate the message to a warning and override the default
message to explain the problem.

7.5.5 XML Format

The following is the schema for creating the <project>.cystate file.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="ComponentStateRules" type="ComponentStateRulesType"/>

 <xs:complexType name="ComponentStateRulesType">
 <xs:sequence>
 <xs:element name="Rule" type="RuleType" minOccurs="1" maxOccurs="unbounded"/>

104 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

 </xs:sequence>
 <xs:attribute name="Version" type="xs:int" use="required"/>
 </xs:complexType>

 <xs:complexType name="RuleType">
 <xs:sequence>
 <xs:element name="Pattern" type="PatternType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="State" type="StateType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Severity" type="SeverityType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="Message" type="xs:string" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PatternType">
 <xs:sequence>
 <xs:element name="Architecture" type="xs:string"/>
 <xs:element name="Family" type="xs:string"/>
 <xs:element name="Revision" type="xs:string"/>
 <xs:element name="Device" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="StateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Prototype"/>
 <xs:enumeration value="Production"/>
 <xs:enumeration value="Obsolete"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SeverityType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="None"/>
 <xs:enumeration value="Note"/>
 <xs:enumeration value="Warning"/>
 <xs:enumeration value="Error"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

The following are the major elements of the .cystate file.

ComponentStateRules

ComponentStateRules is the root element that contains one or more rules for the Component. This
element has a required attribute named “Version” and the only legal value is 1. It has one element,
named Rule.

Rule

The Rule element defines a rule for the Component. Rules are listed in order of precedent. Once a
rule is matched, the result is returned. Each Rule supports one set of the following elements:

 Pattern – This is the name of the pattern to match. The value for this element is specified by
PatternType. It can be any of family, series, device, and/or revision. The pattern is not
hierarchical, and it can be blank to search for everything.

 State – This is the name of the state. The value for this element is specified by StateType. It can
be one of Production, Prototype, or Obsolete.

 Severity – This is the type of message given by the Component for this particular rule. The value
for this element is specified by SeverityType. It can be one of:

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 105

Finishing the Component

 None: That is satisfactory or safe

 Note: Informational

 Warning: Attention is needed

 Error: Danger or Not valid

 Message – This is the actual message string. The “Message” element is optional and if it is not
specified, then the tool displays the default message.

7.5.6 Example <project>.cystate File

The following example shows a <project>.cystate file that specifies the Component to be a prototype
for a PSoC 5 device. If the device is PSoC 3 ES2, the Component will be obsolete, and the user will
get an error to update to ES3. Also, if the device is PSoC 3 ES1, the Component will be obsolete
with the default message.

<?xml version="1.0" encoding="utf-8"?>
<ComponentStateRules Version="1">
<Rule>
 <Pattern>
 <Architecture>PSoC5</Architecture>
 <Family>*</Family>
 <Revision>*</Revision>
 <Device>*</Device>
 </Pattern>
 <State>Prototype</State>
 <Severity>Warning</Severity>
 <Message></Message>
</Rule>
<Rule>
 <Pattern>
 <Architecture>PSoC3</Architecture>
 <Family>*</Family>
 <Revision>ES2</Revision>
 </Pattern>
 <State>Obsolete</State>
 <Severity>Error</Severity>
 <Message>Please update to ES3 to use this Component</Message>
</Rule>
<Rule>
 <Pattern>
 <Architecture>PSoC3</Architecture>
 <Family>*</Family>
 <Revision>ES1</Revision>
 <Device>*</Device>
 </Pattern>
 <State>Obsolete</State>
 <Severity>Error</Severity>
 <Message></Message>
</Rule>
</ComponentStateRules>

106 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

7.6 Add Static Library

A Component may need to ship with pre-compiled libraries for the software stack. Different libraries
may be added to an implementation of a Component for different compiler tool-chains and
configurations (DEBUG/RELEASE).

A couple of reasons to include libraries might be:

 IP Protection – For communications Components, in particular, it is often desirable to "hide" the
implementation of the software stack. Enabling static libraries in Components will allow
developers to use the standard PSoC Creator Component development flow (i.e., not shipping a
library as an extra piece) without having to provide source code for the whole software package.
CapSense is a good candidate to take advantage of this feature.

 Build Performance – Components that require a lot of software can slow down the build
performance of PSoC Creator, often re-building unchanged code many times. By shipping the
non-volatile source code in a library, Component authors can avoid slowing down builds of
projects that use their content.

To add a library to a Component:

1. Right-click on the Component in the Workspace Explorer and select Add Component Item.

The Add Component Item dialog displays.

2. Select the appropriate library file type for the desired toolchain under the Library category from
the templates. The Item name will default to something appropriate for the type selected; it can
be changed as needed. See Best Practices on page 107.

3. When a Library item is selected, the Configuration field becomes active to select the desired
configuration, as follows:

 Debug

 Release

 Both

4. Click Create New to allow PSoC Creator to create the file, or select Add Existing from the pull-
down to select an existing file.

The item is added in the Workspace Explorer in the “Library” directory.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 107

Finishing the Component

7.6.1 Best Practices

Component authors should ensure that no two Components with static libraries have code
dependencies between those static libraries. That is, Comp1 should not have code in its API or Lib
that uses symbols defined by the static library of Comp2.

Best practices for using static libraries in a Component is to create a Component that will have only
the static library(ies) and add that Component to the schematic of Components using the static
library. This will allow Component authors to update the top level Component without having to
update the static library or vice versa. Additionally, Component authors should insure that all static
libraries they add to a Component are added at the Family level. This insures that the Component
author is adding CM-0 code to CM-0 based devices, CM-3 to CM-3, etc.

If during library creation, the Component author selects the wrong template (say GCC instead of
MDK), the Component author can go to their Component, select the library with the wrong template
and right-click, from there the author selects the properties item from the context menu. In the
Properties window, use the File Type property to select the appropriate template for the library.

7.7 Add Dependency

PSoC Creator relies on different System Dependencies that contain the Cypress-provided
Components available in the Component Catalog. Once you have completed all the Components in
your project, you can add it as a User Dependency or Default Dependency.

7.7.1 Add a User Dependency

A User Dependency is used in a specific project.

1. Open or create a design project open in PSoC Creator.

2. Select Project > Dependencies.

108 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

3. On the Dependencies dialog, under User Dependencies, click the New Entry button.

4. On the Open dialog, navigate to the location of the project, select it, and click Open to close the
dialog.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 109

Finishing the Component

5. On the Dependencies dialog, notice that the project you selected is listed under User
Dependencies. Click OK to close the Dependencies dialog.

6. On the Component Catalog, notice that there may be one or more new tabs and categories of
Components, depending on how the Components were configured.

7.7.2 Add a Default Dependency

A Default Dependency is used in any PSoC Creator project.

1. With no project open in PSoC Creator, select Tools > Options to open the Options dialog.

110 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

2. On the dialog, expand the Project Management category and select Default Dependencies,
then click the New Entry button.

3. On the Open dialog, navigate to the location of the library project, select it, and click Open to
close the dialog.

4. On the Options dialog, notice that the project you selected is listed under Default
Dependencies. Click OK to close the Options dialog.

5. Open or create a design project.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 111

Finishing the Component

6. On the Component Catalog, notice that there may be one or more new tabs and categories of
Components, depending on how the Components were configured.

7. If you open the Dependencies dialog, notice that the project is already included under User
Dependencies.

7.8 Build the project

When you have added and completed all the necessary Component items for the Component, you
must instantiate the Component in a design in order to build and test it.

When a Component project is built, all portions of it are built, including the family-specific portions.
After a build, the build directory will contain all aspects of the Component that the Component author
has specified via the project manager.

112 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Finishing the Component

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 113

8. Customizing Components (Advanced)

Customizing Components refers to the mechanism of allowing custom code (C#) to augment or
replace the default behavior of an instantiated Component within PSoC Creator. The code is
sometimes referred to as “customizers,” which may:

 customize the Configure dialog

 customize symbol shapes / display based on parameter values

 customize symbol terminal names, counts, or configuration based on parameters

 generate custom Verilog code

 generate custom C/assembly code

 interact with the clocking system (for clock and PWM Components)

This chapter provides examples for customizing a Component, provides instructions on
customization source, and it lists and describes the interfaces that can be used to customize
Components. The icyinstancecustomizer.cs C# source file provides the definitive parameters and
return values for the methods provided in the customizer interfaces. The cydsextensions project
contains the necessary source code for customization. This project is included with PSoC Creator,
and the documentation is located in the PSoC Creator Customization API Reference Guide
(customizer_api.chm file, located in the same directory as this Component Author Guide). The
cydstoolkit project will contain code that complies with PSoC Creator Component versioning policies.
Its primary purpose is to facilitate sharing of code between Components and PSoC Creator itself.
Internal Cypress Component authors should place shared code here.

8.1 Customizers from Source

PSoC Creator accepts customizers developed in C#. The following sections describe different
aspects of the C# source code.

8.1.1 Protecting Customizer Source

Source code customizers can depend on external assemblies. So if you want to avoid distributing
your customizer as source code, you can have a source code stub which loads an external
assembly, and just invokes methods in the external assembly.

8.1.2 Development flow

You will supply the C# source files, resource files, and assembly references for the given project.
PSoC Creator will build the customization DLL out of the given code automatically at run time. This
automatic build happens in the following cases:

1. A project is opened and it or any of its dependencies have customizer source files, but don't have
a valid customizer DLL or the customizer DLL which was created earlier is outdated.

2. A project is built and it or any of its dependencies have customizer source files, but don't have a
valid customizer DLL or the customizer DLL which was created earlier is outdated.

114 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Customizing Components (Advanced)

3. The Component author explicitly asks PSoC Creator to build a new customizer DLL.

You will be able to specify whether to build the customizer DLL in "Debug" or "Release" mode, as
well as specify command line options to the compiler.

If there are any errors/warnings during the above build procedure, the errors/warnings are displayed
in the Notice List window. Since the DLL is built on the fly, there is no need to keep any of the built
customizer DLLs in source control.

8.1.3 Add Source File(s)

To add source files to your Component:

1. Right-click on the Component and select Add Component Item.

The Add Component Item dialog displays.

2. Select the C# icon under “Misc.”

3. Under Target, accept Generic Device.

4. For Item Name, type an appropriate name for the C# file.

5. Click Create New.

The Component item displays in the Workspace Explorer tree, in a sub-directory named “Custom.”

The Text Editor opens the .cs file, and you can edit the file at this time.

8.1.4 Create Sub-Directories in “Custom”

To add a sub-directory, right-click on the "Custom" directory and select Add > New Folder.

Note Any sub-directory created will be physical.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 115

Customizing Components (Advanced)

8.1.5 Add Resource Files

You can add .NET resource files (.resx) for the customizers. These files can be stored under the
"Custom" directory or in sub-directories you created. Multiple resource files are allowed per
Component.

To add the resource file:

1. Right click on the directory and choose Add > New Item.

2. On the New Item dialog, select the Resx file icon, type a name for the file, and click OK.

8.1.6 Name the Class / Customizer

There can only be one class which will implement the required customizer interfaces. This class
must be named "CyCustomizer". The namespace under which this class resides must end with the
name of the Component which it is customizing. For example, for a Component named "my_comp",
the legal namespaces under which the "CyCustomizer" class could reside are:

Foo.Bar.my_comp
my_comp
Some.Company.Name.my_comp

See Usage Guidelines on page 117.

8.1.7 Specify Assembly References

You will be able to specify references to additional external DLLs for the customizers, from within
PSoC Creator itself. The following assemblies are automatically included:

 "System.dll"

 "System.Core.dll"

 "System.Data.dll"

 "System.Windows.Forms.dll"

 "System.Drawing.dll"

 "System.Numerics.dll"

 "System.XML.dll"

 "cydsextensions.dll"

 "cydstoolkit.dll"

To specify .NET references and other user references, browse to the directory where the assembly
resides and select it. In the case of .NET references you will have to browse to:

%windir%\Microsoft.NET\Framework\v2.0.50727

You can also specify relative paths in the assembly references dialog. You can add assembly
references relative to the project top level directory (.cydsn). You will have to type in the relative path.

8.1.8 Customizer cache

The customizer cache is the directory where all the compiled customizer DLLs reside. The location
of this directory depends on the executable which is compiling the DLLs. For example, if the
customizer DLL is compiled from within PSoC Creator, the directory will be located at:

Documents and Settings/user_name/Local Settings/Application Data/
Cypress Semiconductor/PSoC Creator/<Release_Dir>/customizer_cache/

116 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Customizing Components (Advanced)

Similarly if the DLL is compiled during a build (within cydsfit), the directory will be located at:

Documents and Settings/user_name/Local Settings/Application Data/
Cypress Semiconductor/cydsfit/<Release_Dir>/customizer_cache/

8.2 Precompiled Component Customizers

A precompiled Component customizer is an advanced feature, and most Component authors will not
need it. However, in the case of very large and static libraries with many Component customizers
(such as libraries supplied with PSoC Creator), this feature can provide a performance improvement.

By design, Component customizers are rebuilt when necessary. Checking to see if the Component
customizers are up to date requires inspecting all of the constituent files, and it can take some time
to load those files from disk and inspect them.

To bypass loading and inspecting those files and to define the Component customizer assembly to
use, it is possible to precompile the Component customizers for a library. This will build the
Component customizer assembly, copy it into the library directory structure, and associate it with the
library. The precompiled Component customizer is named _project_.dll and is visible in the
Workspace Explorer at the top level of the project.

Note The existence of a precompiled Component customizer will bypass the source files. If the
source files change, the Component customizer used will be silently out-of-date. In addition, a
precompiled customizer is opened automatically, which will prevent the project from being renamed
or the customizer from being updated. For these reasons, only use this feature if performance
requires it, and only if you are sure that the Component customizers are unlikely to change.

To reduce confusion, PSoC Creator will refuse to build a new customizer assembly if a precompiled
customizer assembly for a project already exists, since the precompiled customizer assembly will
always be used.

To create a precompiled Component customizer assembly for a library, do the following.

1. Delete any existing precompiled Component customizer assembly from the project (see steps
below).

2. Add the Advanced Customizer toolbar to PSoC Creator.

3. Click the Build and Attach customizer button.

To remove a precompiled Component customizer assembly from a library, do the following.

1. Remove the precompiled Component customizer assembly (named _project_.dll) from the proj-
ect (but not from disk -- it is open, and the delete from disk will fail).

2. Exit from PSoC Creator, and then delete any precompiled Component customizer assembly in
the project folder.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 117

Customizing Components (Advanced)

8.3 Usage Guidelines

8.3.1 Use Distinct Namespaces

The leafname of the namespace identifies the Component to which the customizer source applies. If
resources (.resx) files are used, they too use that same name to identify the compiled resources.

When a Component is renamed or imported, all instances of the namespace within the customizer
source are replaced.

To avoid unintended substitutions in the source code, and to allow shared source (where one
Component can use common utility routines defined in another Component in the same library), all
the Components in a library should have a common distinct prefix, for example:

Some.Company.Name.

8.3.2 Use Distinct External Dependencies

.NET resolves external assembly dependencies based on the assembly name, not the file location.
So two different assemblies with the same name can get confused. To avoid problems with external
dependencies, ensure that each externally referenced assembly has a distinct name. Experience
shows that .NET does a better job distinguishing between strongly named assemblies.

8.3.3 Use Common Component To Share Code

If two customizers (e.g., A and B) want to share code, create a new Component called Common,
which holds the code to be shared. Of course, if you import A or B, you also need to import
Common.

8.4 Customization Examples

See the example project located in the following directory:

<Install Dir>\examples\customizers\SimpleDialogCustomizer.cydsn\

8.5 Interfaces

The customization support defines two sets of interfaces:

 Customization interfaces implemented by Components

 System interfaces used by customization interfaces

The interfaces are named with the version number concatenated to the end of the name. This allows
for upgrades to the interface without breaking existing customizers.

For in depth documentation, refer to the PSoC Creator Customization API Reference Guide
(customizer_api.chm file, located in the same directory as this Component Author Guide).

118 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Customizing Components (Advanced)

8.5.1 Clock Query in Customizers

PSoC Creator provides a robust mechanism for Component authors to provide and query for clock-
related information. This is provided via a series of customization interfaces.

8.5.1.1 ICyTerminalQuery_v1

Has two methods called GetClockData. One takes two parameters (a terminal name, and an index)
and returns the frequencies of the clock that drives the terminal. The second takes an "instance
path", a terminal name, and an index and returns the clock frequency of buried clocks.

8.5.1.2 ICyClockDataProvider_v1

Components that generate or manipulate clocks can provide their frequency information to PSoC
Creator and it will automatically be accessible to the GetClockData methods.

8.5.2 Clock API support

Certain Component APIs need access to the initial clock configuration in order to properly function
(e.g., I2C). PSoC Creator will expose the initial configuration of the following via #defines in cyfitter.h.

#define BCLK__BUS_CLK__HZ value
#define BCLK__BUS_CLK__KZ value
#define BCLK__BUS_CLK__MHZ value

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 119

9. Adding Tuning Support (Advanced)

Tuning support is a highly advanced feature that is used for a few limited Components, such as
CapSense®, that require the ability for the user to tune the Component while it is in the design.

Tuning requires communication between the firmware Component and the host application. The
firmware sends scan values to the GUI and the GUI sends updated tuning parameters down to the
firmware. This is an iterative process in order to get the best possible results out of the device.

PSoC Creator supports this requirement by providing a flexible API that Component authors can use
to implement tuning for their Component.

9.1 Tuning Framework

The tuning framework is a general purpose framework set up to support tuning by any Component.
The framework primarily consists of two APIs. One API is implemented by Component authors and it
is the launching point for a Component tuner. The second API is implemented by PSoC Creator and
it provides a communication mechanism that a tuner uses to communicate with the PSoC device.

Communication to the device is done using an I2C, EZ I2C, SPI, or UART Component in the end
user’s design.

Tuning is typically done with a GUI that displays scan values on the various inputs and allows the
user to set new tuning parameter values. The effects of the parameter changes are visible in real-
time as they are applied.

The tuning application runs on a PC that is running PSoC Creator and it displays values as they
come from a PSoC device. Parameter values are written from the PC down to the chip at the user’s
request.

It is the responsibility of the user to set up this two-way communication channel using a
communication protocol that both the tuning framework and the tunable Component support. It is not
possible for PSoC Creator to automatically set up a communication channel for the user’s design
because it is not safe to make assumptions about what communication is available or how the user
is using the communication Components for additional purposes.

120 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding Tuning Support (Advanced)

9.2 Architecture

The following diagram shows the PSoC Creator tuning framework. PSoC Creator launches tuning
for a Component using the TunerLaunch API. The Component’s tuner uses the TuningComm API to

read and write to the device. PSoC Creator interacts with the PSoC device using I2C, SPI, or UART
and the MiniProg3.

9.3 Tuning APIs

PSoC Creator defines two APIs for use by Component authors to support tuning: LaunchTuner and
TunerComm.

The following sections list and summarize the various tuning interfaces. For in depth documentation,
refer to the PSoC Creator Tuning API Reference Guide (tuner_api.chm file, located in the same
directory as this Component Author Guide).

9.3.1 LaunchTuner API

The LaunchTuner API is implemented by the Component and is called by PSoC Creator when the
user selects the Launch Tuner option on a Component instance. Any Component that implements
the LaunchTuner API is considered a tunable Component. PSoC Creator passes the tuner a
communication object that implements the TunerComm API. The tuner uses this object to read and
write from the device.

PSoC Creator launches the tuner as a non-modal window so that the user can do other things (such
as debugging) while the tuner is running.

9.3.2 Communications API (ICyTunerCommAPI_v1)

The communications API defines a set the functions that allow the tuner GUI to communicate with
the firmware Component without knowing any specifics about the communication mechanism being
used. The application launching the tuner is responsible for implementing each of the functions for
their desired communication protocol.

The TunerComm API is implemented by PSoC Creator and is used by a tuner to communicate with
the PSoC device using a supported tuning communication channel.

The TunerComm API implements a data communication channel between the tuner GUI and the
Component firmware on the chip. The contents of the data being communication are opaque to
PSoC Creator. It is up to the Component tuner to make sure that the GUI and firmware agree on the
contents of the data being passed.

PSoC

Creator
Component

TunerLaunch API

TunerComm API

PSoC

I2C, SPI, or UART

MP3

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 121

Adding Tuning Support (Advanced)

9.4 Passing Parameters

Parameters are passed between PSoC Creator and the tuner using the CyTunerParams class which
is a simple wrapper class for name/value pairs.

9.5 Component Tuner DLL

The Component tuner code should be included with the Component as a tuner DLL. Add a “Tuner
DLL” file to the Component using the Add Component Item dialog.

Note You cannot add more than one tuner DLL file to a Component.

PSoC Creator does not support source-based tuners. Therefore, the tuner must be compiled outside
of the tool and supplied as a DLL.

9.6 Communication Setup

As described previously in this chapter, the communication setup between the tuner and the device
is owned by the Component’s end user. A Component tuner has no knowledge of how this
communication will be set up. To support this abstraction, the TunerComm API provides a set-up
method. The Component tuner should call this method to initiate communication configuration.

Refer to the PSoC Creator Tuning API Reference Guide (tuner_api.chm file, located in the same
directory as this Component Author Guide).

9.7 Launching the Tuner

PSoC Creator will provide a menu item that launches the tuner for a Component instance. This
menu item is only available on the Component instance context menu since it only makes sense
within the context of a particular tunable Component instance.

122 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding Tuning Support (Advanced)

9.8 Firmware Traffic Cop

The user’s design will contain a main.c file that implements the user’s firmware design. In order to
support tuning, the user’s main function will need to contain “traffic cop” code that facilitates data

transfer between the I2C and tunable Component. The following pseudo code shows an example
main.c.

main() {

 struct tuning_data {
 // this data is opaque to PSoC Creator but known to the Component
 } tuning_data;

 I2C_Start(); // Start the communication Component
 CapSense_Start(); // Start the tunable Component

 I2C_SetBuffer(tuning_data); // Configure I2C to manage buffer

 for (;;) {

 // If there the data from the last push has been consumed
 // by the PC then go ahead and fill the buffer again.

 if (buffer read complete) {
 CapSense_FillBuffer(tuning_data);
 }

 // If the PC has completed writing new parameter values
 // then pass those along to the Component for processing

 if (buffer write complete) {
 CapSense_ProcessParameters(tuning_data);
 }
 }
}

This main function relies on a way to synchronize the reads and writes between the chip and the
host PC. This will likely be implemented by using a byte of data in the buffer for read and write
enables.

9.9 Component Modifications

To support tuning the Component’s firmware and APIs must be built to support tuning. It is likely that
users will not want the overhead of tuning support in their final design so it is required that the
Component configuration dialog give the user an option to put the Component into tuning mode.
After the Component is in tuning mode, the user’s design must be built and programmed into the
device.

9.9.1 Communication Data

Data to/from the chip will be communicated via a shared c struct that contains fields for the scan
values and the tuning parameter values. The exact structure of this struct is decided at build time by

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 123

Adding Tuning Support (Advanced)

the Component. The firmware that is built when in tuning mode will be aware of this structure so that
it can process parameters correctly.

9.10 A simple tuner

The class that implements the tuner has full control over how it will operate. The following is example
code for a tuner (the API documentation provides more details):

public class MyTuner : CyTunerProviderBase
{
 MyForm m_form; // a custom GUI

 public MyTuner() // Tuner constructor just creates the form
 {
 m_form = new MyForm();
 }

 public override void LaunchTuner(CyTunerParams params,
 ICyTunerComm comm, CyTunerGUIMode mode)
 {
 m_form.InitParams(params); // Set up the form
 m_form.SetComm(comm);

 // When this method exists, LaunchTuner returns to Creator
 m_form.ShowDialog();
 }

 // Creator calls this method to retrieve the new
 // values of all parameters
 public override CyTunerParams GetParameters()
 {
 return(m_form.GetParameters());
 }
}

In this code, the tuner creates a custom GUI (MyForm) and then calls show dialog on this. Since this
tuner is being run its own thread, it is safe for it to call the blocking call, ShowDialog(), without fear of
hanging PSoC Creator.

PSoC Creator will call the LaunchTuner method and then wait for it to return. Once the method call
returns, PSoC Creator will call GetParameters() to get the new parameter values which it will then
store on the Component instance.

124 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding Tuning Support (Advanced)

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 125

10. Adding Bootloader Support (Advanced)

This chapter describes how to provide bootloader support for a Component. For more information
about the PSoC Creator bootloader system, refer to the PSoC Creator System Reference Guide.

To provide bootloader support in a Component, there are two general areas to modify:

 Firmware

 Customizer Bootloader Interface

10.1 Firmware

For a Component to support bootloading, it must implement five functions described in
Section 10.1.2. These functions are used by the bootloader for setting up the communications
interface and relaying packets back and forth with the host.

For more information about source code and implementing functions, see the Adding API
Files chapter on page 75.

10.1.1 Guarding

Because there can be multiple bootloader supporting Components in the design at once, each with
implementations of the necessary bootloader functions, all must be guarded for conditional
preprocessor inclusion. This guard is:

#if defined(CYDEV_BOOTLOADER_IO_COMP) &&
 (CYDEV_BOOTLOADER_IO_COMP == CyBtldr_`@INSTANCE_NAME`)

 //Bootloader code

#endif

10.1.2 Functions

The following functions need to be implemented in the Component to support bootloading:

 CyBtldrCommStart

 CyBtldrCommStop

 CyBtldrCommReset

 CyBtldrCommWrite

 CyBtldrCommRead

The following sections provide function definitions.

126 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding Bootloader Support (Advanced)

10.1.2.1 void CyBtldrCommStart(void)

10.1.2.2 void CyBtldrCommStop(void)

10.1.2.3 void CyBtldrCommReset(void)

10.1.2.4 cystatus CyBtldrCommWrite(uint8 *data, uint16 size, uint16 *count, uint8 timeOut)

Description:
This function will start the selected communications Component. In many cases, this is just a
call to the existing function `@INSTANCE_NAME`_Start()

Parameters: None

Return Value: None

Side Effects:
Starts up the communications Component and does any configuration necessary to allow
data to be read and/or written by the PSoC.

Description:
This function will stop the selected communications Component. In many cases, this is just a
call to the existing function `@INSTANCE_NAME`_Stop()

Parameters: None

Return Value: None

Side Effects:
Stops up the communications Component and does any tear down necessary to disable the
communications Component.

Description:
Forces the selected communications Component to remove stale data. This is used when a
command has been interrupted or is corrupt to clear the Component’s state and begin again.

Parameters: None

Return Value: None

Side Effects:
Clears any cached data in the communications Component and sets the Component back to
a state to read/write a fresh command.

Description:

Requests that the provided size number of bytes are written from the input data buffer to the
host device. Once the write is done count is updated with the number of bytes written. The
timeOut parameter is used to provide an upper bound on the time that the function is allowed
to operate. If the write completes early it should return a success code as soon as possible.
If the write was not successful before the allotted time has expired it should return an error.

Parameters: uint8 *data – pointer to the buffer containing data to be written

uint16 size – the number of bytes from the data buffer to write

uint16 *count – pointer to where the comm. Component will write the count of the number of
bytes actually written

uint8 timeOut – amount of time (in units of 10 milliseconds) the comm. Component should
wait before indicating communications timed out

Return Value:
CYRET_SUCCESS if one or more bytes were successfully written. CYRET_TIMEOUT if the
host controller did not respond to the write in 10 milliseconds * timeOut milliseconds.

Side Effects: None

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 127

Adding Bootloader Support (Advanced)

10.1.2.5 cystatus CyBtldrCommRead(uint8 *data, uint16 size, uint16 *count, uint8 timeOut)

10.1.3 Customizer Bootloader Interface

The bootloader requires that the communication Component is configured for both transfer in and
out of the PSoC device. For Components that can be configured to meet this requirement, there is
an interface that can be implemented by the customizer that will inform PSoC Creator of this
support, as follows:

 ICyBootLoaderSupport

This interface is described in the the PSoC Creator Customization API Reference Guide
(customizer_api.chm file, located in the same directory as this Component Author Guide), under
“Common Interfaces.” It contains a single method that is used by the bootloader to determine
whether the current configuration of the Component is bootloader compatible.

public interface ICyBootLoaderSupport
{
 CyCustErr IsBootloaderReady(ICyInstQuery_v1 inst);
}

When the Component is bootloader ready, any instance placed in the design will be shown as an
option for the bootloader IO Component in the Design-Wide Resources System Editor. The
implementation of the single method within the customizer only needs to validate the current
configuration of the Component to make sure the settings are compatable with bi-directional
communication.

For more information about customizers, see the Customizing Components (Advanced) chapter on
page 113.

Description:

Requests that the provided size number of bytes are read from the host device and stored in
the provided data buffer. Once the write is done count is updated with the number of bytes
written. The timeOut parameter is used to provide an upper bound on the time that the
function is allowed to operate. If the read completes early it should return a success code as
soon as possible. If the read was not successful before the allotted time has expired it should
return an error.

Parameters: uint8 *data – pointer to the buffer to store data from the host controller

uint16 size – the number of bytes to read into the data buffer

uint16 *count – pointer to where the comm. Component will write the count of the number of
bytes actually read

uint8 timeOut – amount of time (in units of 10 milliseconds) the comm. Component should
wait before indicating communications timed out

Return Value:
CYRET_SUCCESS if one or more bytes were successfully read. CYRET_TIMEOUT if the
host controller did not respond to the read in 10 milliseconds * timeOut milliseconds.

Side Effects: None

128 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Adding Bootloader Support (Advanced)

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 129

11. Best Practices

This chapter covers general best practices to consider when creating Components, including:

 Clocking

 Interrupts

 DMA

 Low Power Support

 Component Encapulation

 Verilog

11.1 Clocking

When using the clocking resources internal to the PSoC device, there are several things to keep in
mind. As with any digital system, clocking architectures must be completely understood and
designed with the limitations and device characteristics firmly in mind.

Many of the digital resources available in the PSoC device can be clocked using the internal clocks
of the device. However, this is not universally true. There are many other resources that can and will
be contrived using clock sources other than those internally available in the chip. It is both of these
cases that have to be considered when designing Components for use in the PSoC device.

11.1.1 UDB Architectural Clocking Considerations

Inside of each UDB, there may exist at least two clock domains. The first of these is the bus clock
(BUS_CLK), used by the CPU in PSoC 3 and PSoC 5LP to access the registers internal to the UDB.
The equivalent clock in PSoC 4 devices is the system clock (SYSCLK). The UDB registers include
the status, control, and datapath internal registers.

The second class of clock domain is controlled by a “user” clock. This clock may have its origin
entirely outside the PSoC internal clocking structure. This clock is the main clock for the
implemented function. For PSoC 4 devices, the (internal) clock is driven via a HFCLK and its
frequency must be below that of the SYSCLK to allow bus accesses by the CPU. The frequency
restriction also applies to external clocks. PSoC 3 and 5LP devices do not have these restrictions.

To avoid metastable conditions in the UDB, synchronization flip-flops may be necessary whenever a
signal crosses either clock domain boundary. There are a couple of ways that this can be
accomplished with resources internal to the UDB. The first way is to use the PLD macrocells as
synchronizers. The second way is to allocate the status register as a 4-bit synchronizer. The status
register can be configured to allow its 8 internal flip-flops to become 4 dual flip-flop synchronizers. As
expected, however, using the status register in this manner removes it from the pool of resources
inside the UDB.

130 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

11.1.2 Component Clocking Considerations

When considering what clock should be used to clock a particular function in a design, it is
sometimes tempting to allow both edges of a clock to be used. While this is sometimes acceptable in
certain situations, it becomes very dangerous in others. If, for instance the clock source to be used is
not a 50% duty cycle, the setup and hold timing budgets may be violated resulting in unexpected or
unwanted results. To prevent these types of problems, all designs should use only posedge (Verilog
instances) clocking and only connect clock pins of Components to the positive sense of the clock. If
an event must happen on the negative edge of a clock, that can be accomplished by providing a 2X
multiple of the needed clock to clock the circuitry appropriately.

11.1.3 UDB to Chip Resource Clocking Considerations

Signals that enter or leave the UDB array are not always intended for the I/O pins of the device.
Contrarily, many of those signals connect to other resources on the PSoC such as fixed function
blocks, DMA, or interrupts. Some of those blocks have built-in re-synchronizers, but others do not.
Any time a signal crosses the boundary between the UDB array and one of these other elements,
there is a possibility of problems. These signals have to be analyzed to ensure that they meet the
required timing.

The timing analysis of signals crossing clock domain boundaries is necessary in all circumstances.
Additionally, even for signals that are synchronous to the internal clocks, it may be necessary to
validate their phase relationships to the region that they enter. A synchronous signal that is shifted by
some amount may not satisfy the requirements for the timing in the destination circuitry.

11.1.4 UDB to Input/Output Clocking Considerations

The clocking structure available within the UDB that allows for global, BUS_CLK, and user clocks is
not universally available to the rest of the PSoC architecture. Because of this limitation, signals sent
to and/or received by the UDB must receive special consideration.

The GPIO registers have access only to BUS_CLK (PSoC 3/PSoC 5LP) or HFCLK (PSoC 4) and
are not clock aligned with any external clock that a function may be using. Because of this limitation,
any PSoC 3/PSoC 5LP output registers that are not clocked by BUS_CLK must use UDB resources
before being sent to the output. This results in a very long clock to out path.

Any signal can be used by the UDB as an external clock signal. However, these external clocks do
not come directly via the clock tree. They are routed through long paths before they can enter the
clock tree. This makes the I/O timing problem more complex by creating long clock arrival times
resulting in long set-up times.

11.1.5 Metastability in Flip-Flops

In any discussion of clocking for digital circuitry, it is necessary to understand the consequences of
the clocking architecture. Paramount in that discussion should be a definition and explanation of
metastable states of flip-flops.

Metastability can be defined as a period of time when the output of a flip-flop is unpredictable or is in
an unstable (or metastable) state. Eventually, after some time, this state will resolve to a stable state
of either a ‘1’ or a ‘0’. However, that resolution may not be quick enough for circuitry that is
dependent upon the output to correctly evaluate the final result.

In combinatorial circuits, those outputs may cause glitches in the circuits that it drives. In sequential
circuits, those glitches result in hazard conditions that could affect the storing of data in registers and

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 131

Best Practices

the decision processes for state machines. It is therefore imperative that metastable states be
avoided.

There are several conditions that can result in metastable conditions, these conditions include:

 Signals that cross a clock domain boundary.

 Long combinatorial paths between flip-flops in a single clock domain.

 Clock skew between flip-flops in a single clock domain

Any one of these (or other) situations may cause a metastable condition. In general if the set-up time
(Tsu) or hold time (Th) of the flip-flop is violated, a metastable state is possible if not probable.

11.1.6 Clock Domain Boundary Crossing

There are several storage elements internal to the PSoC 3/PSoC 5LP UDBs. Each one of these is
accessible via the CPU BUS_CLK/SYSCLK. They are also accessible via some other clock source
that is the primary clock for the circuit (ClkIn).

For PSoC 3/PSoC 5LP, this clock source can be selected from several places:

1. CPU BUS_CLK,

2. global clock (SrcClk), which can be any internal clock, such as IMO, ILO, and master clock, or

3. external clock (ExtClk).

For PSoC 4 devices, the clock selection is restricted to (2) clocks derived from High Frequency clock
(HFLCLK) and (3) external clock (ExtClk).

If the ClkIn is the BUS_CLK/HFCLK, we can be assured that we have a single clock domain and
worries about clock domain crossing can be eliminated. However, there may still remain situations
where excessive skew is possible or long combinatorial paths exist.

11.1.7 Long Combinatorial Path Considerations

When long combinatorial paths are created in a design, it is possible that set-up time for a
subsequent storage element is violated. To avoid such conditions, the total delays involved must be
less than the cycle time of the clock. In other words, the following equation must be true:

Equation 1

Tco represents the clock to out time of the driving flip-flop. Tcomb is the combinatorial delay of the
intervening circuitry. Tsu is the set-up time of the next flip-flop stage.

If these long paths are contained completely within a Component, they are more easily handled.
Therefore, signals leaving a Component should be driven by a flip-flop to avoid problems. If this is
not possible or desirable, a complete understanding of the timing from clock to output of the
Component must be understood and communicated.

11.1.8 Synchronous Versus Asynchronous Clocks

Clocking architectures often contain multiple types of clocks. Some of these clocks may be
synchronous to a master system clock and some of them may be asynchronous to that clock. For
our purposes, we define the master system clock as that clock (or some derivative of it) that the CPU
uses as its core clock. This is the clock that is referred to as BUS_CLK.

Tco + Tcomb + Tsu < Tcycle

132 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

To best avoid metastability problems, signals that are interfaced to the CPU should be synchronized
with the BUS_CLK/HFCLK signal. If they are already a derivative of that clock, then the task for a
designer is to ensure that there are no long combinatorial path problems or problematic skews
(discussed earlier).

If signals need to be interfaced to the MPU but are controlled by clocks that are asynchronous to
BUS_CLK/HFCLK, they may need to be synchronized before being presented to that interface.
There are some primitive Components that are available in PSoC Creator that can help with that task
and are detailed in the following sections.

11.1.9 Utilizing cy_psoc3_udb_clock_enable Primitive

There is a means available in PSoC Creator accessible by instantiation of a Verilog primitive that can
help with the complexities of clocking and handle some clock conditioning automatically. That
primitive is the cy_psoc3_udb_clock_enable. The use of this primitive can aid in handling clocks that
are synchronous as well as asynchronous.

The cy_psoc3_udb_clock_enable has inputs for an enable (enable) and clock (clock_in), a clock
output (clock_out) that will drive the UDB Components, and a parameter to specify the intended
synchronization behavior for the clock result (sync_mode).

The clock_in signal can be:

1. global clock (SrcClk, a clock source internal to PSoC such as IMO, ILO, master clock, HFCLK
etc.)

2. local clock (output of a divider from a clock source SrcClk such as IMO, ILO, master clock,
HFCLK etc.)

3. external clock (ExtClk, a clock routed from external source into the chip via a pin)

These can be either a global clock or a local clock and can be either synchronous or asynchronous
to BUS_CLK/HFCLK. The enable signal can also be either synchronous or asynchronous to
BUS_CLK/HFCLK. These two signals are then connected to the primitive and the user selects either
synchronous or asynchronous mode.

Once these have been done, the fitter in PSoC Creator will determine the implementation necessary
to obtain the requested clock behavior for the UDB elements and attach the appropriate signals to
the mapped UDB results. The rule set used when mapping the clock/enable to the UDB is listed in
the following table:

Mapping Clock/Enable to UDB

Inputs UDB Translation

clock_in enable
sync_
mode

Enable
Mode

Translated
enable

clock_out Description

Global clock,

Sync to BUS_CLK/HFCLK
Sync to
clock_in

Yes Level enable clock_in
Already synchronous to clock_in so just output
clock_in.

Global clock,

Async to BUS_CLK/HFCLK
Sync to
clock_in

Yes Not allowed, error during synthesis

Local clock,

Sync to BUS_CLK/HFCLK
Sync to
clock_in

Yes Edge
clock_in &
enable

SrcClk
(clock_in)

clock_out is synchronous to the source clock.

Local clock,

Async to BUS_CLK/HFCLK
Sync to
clock_in

Yes Edge
Sync(clock_in
& enable)

BUS_CLK/
HFCLK

clock_in and enable are synced to clock_out.

clock_out is synchronous to BUS_CLK/HFCLK.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 133

Best Practices

The Sync() function indicates that a double flip-flop has been used to synchronize the signal with
clock_out. These double registers are taken from a status cell configured in sync mode. The Enable
mode relates to the mode in which the internal logic chooses the clock signal in the Clock Select/
Enable control logic. This will be Edge type when the sync_mode is on and clock_in is a routed
clock.

A typical instantiation of the cy_psoc3_udb_clock_enable primitive might look something like this:

cy_psoc3_udb_clock_enable_v1_0 #(.sync_mode (‘TRUE)) My_Clock_Enable (
 .clock_in (my_clock_input),
 .enable (my_clock_enable),
 .clock_out (my_clock_out));

Global clock,

Sync to BUS_CLK/HFCLK
Async Yes Level Sync(enable) clock_in

enable is synced to clock_out. clock_out is just
clock_in.

Global clock,

Async to BUS_CLK/HFCLK
Async Yes Not allowed, error during synthesis

Local clock,

Sync to BUS_CLK/HFCLK
Async Yes Edge

Sync(clock_in
& enable)

SrcClk
(clock_in)

enable and clock_in are synced to clock_out.

clock_out is synchronous to source clock.

Local clock,

Async to BUS_CLK/HFCLK
Async Yes Edge

Sync(clock_in
& enable)

BUS_CLK/
HFCLK

enable and clock_in are synced to clock_out.

clock_out is synchronous to BUS_CLK/HFCLK.

Global clock,

Sync to BUS_CLK/HFCLK
Sync No Level enable clock_in

enable is already synced to clock_in.

clock_out is just clock_in.

Global clock,

Async to BUS_CLK/HFCLK
Sync No Level enable clock_in

enable is already synced to clock_in.

clock_out is just clock_in.

Local clock,

Sync to BUS_CLK/HFCLK
Sync No Level enable

ExtClk
(clock_in)

enable is already synced to clock_in.

The Local clock is routed through the external
clock routing path. Therefore clock_out is
clock_in routed through ExtClk path.

Local clock,

Async to BUS_CLK/HFCLK
Sync No Level enable

ExtClk
(clock_in)

enable is already synced to clock_in.

The Local clock is routed through the external
clock routing path. Therefore clock_out is
clock_in routed through ExtClk path.

Global clock,

Sync to BUS_CLK/HFCLK
Async No Level Sync(enable) clock_in

enable is synced to clock_in.

clock_out is just clock_in.

Global clock,

Async to BUS_CLK/HFCLK
Async No Level Sync(enable) clock_in

enable is synced to clock_in.

clock_out is just clock_in.

Local clock,

Sync to BUS_CLK/HFCLK
Async No Level Sync(enable)

ExtClk
(clock_in)

enable is synced to clock_in.

The Local clock is routed through the external
clock routing path. Therefore clock_out is
clock_in routed through ExtClk path.

Local clock,

Async to BUS_CLK/HFCLK
Async No Level Sync(enable)

ExtClk
(clock_in)

enable is synced to clock_in.

The Local clock is routed through the external
clock routing path. Therefore clock_out is
clock_in routed through ExtClk path.

Mapping Clock/Enable to UDB

Inputs UDB Translation

clock_in enable
sync_
mode

Enable
Mode

Translated
enable

clock_out Description

134 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

11.1.10 Utilizing cy_psoc3_sync Component

Another useful tool is the cy_psoc3_sync primitive. This primitive is a double flip-flop used to
synchronize signals to a clock. These double flip-flops are created as an option to the UDB status
register. Even though the primitive is a single bit wide, it will consume an entire status register. It is
possible, however, to instantiate four of these primitives and still consume a single register since
there are eight flip-flops available.

A typical instantiation of the cy_psoc3_sync primitive might look something like this:

cy_psoc3_sync My_Sync (
 .clock (my_clock_input),
 .sc_in (my_raw_signal_in),
 .sc_out (my_synced_signal_out));

11.1.11 Routed, Global and External Clocks

There are three types of clocks available to the UDBs. These include:

 eight global clocks, output from user-selectable clock dividers

 BUS_CLK, the highest frequency clock in the system

 external clock, routed from an external signal and used as a clock input to support direct clocked
functions (such as SPI Slave).

11.1.12 Negative Clock Edge Hidden Dangers

When designing with Verilog, we have determined that negedge statements should be avoided. This
philosophy is also applicable to clocks that connect to instantiated Components or schematic
Components.

Mixing positive edge triggering and negative edge triggering commonly restricts the length of time a
signal has to transverse it path. If, for instance, a flip-flop is clocked with the positive edge and the
resulting output is sent through some logic to another flip-flop that is clocked with a negative edge,
the Tcycle is effectively cut in half. If there is a need to trigger on both edges of a clock, a double
rate clock should be implemented and alternate positive edges should be used for triggering.

11.1.13 General Clocking Rules

 Do not create clocks in the Component. A clock signal should be an input to the Component and
all clocked logic should be clocked on that single clock. For example, do not AND a clock signal
to implement a gated clock.

 Do not take a global clock signal and create a combinatorial signal with it. Similarly do not send a
global clock signal out of a Component. The timing of a global clock when it is used for anything
other than as the clock input to a UDB element is not defined. To create a clock signal with a
defined timing relationship, the output of a flip-flop clocked by another clock must be used. This
allows the generation of a clock output at 1/2 or slower rate than the input clock.

 Drive all outputs from a Component from a clocked element (flip-flop) to minimize the clock to out
time.

 Avoid asynchronous reset and preset. From a timing perspective they will cause a combinatorial
timing path from the reset/preset signal to the registered output to exist.

 If a data signal will be asynchronous to a clock, then a synchronizer is required.

 Global clock signals should not be output from a Component.

 Avoid clocking on negative edges of clocks. Use a 2x clock instead.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 135

Best Practices

11.2 Interrupts

The main role of interrupts is to interact with CPU firmware or a DMA channel. Any data signal in the
UDB array routing can be used to generate an interrupt or DMA request. The status register and
FIFO status registers are considered the primary means of generating these interrupts. When small
amounts of data and frequent interaction with the CPU is required, the status register is the logical
choice for generating interrupts.

Whether an interrupt is buried in a Component or exposed as a terminal on the symbol should be
based on whether the processing of the interrupt is specific to the application. If it is specific the
Component should perform the necessary operations and then add merge banners for any
application handling if appropriate.

The generation of interrupts or DMA request is specific to the design. For example an interrupt that is
targeted for the CPU may be designed to be sticky (clear on read) but that same request for DMA
would not be appropriate because the design of the transaction descriptors would have to
incorporate a separate descriptor to clear the request in addition to the transaction descriptors to
process the data.

11.2.1 Status Register

A high level view of the Status and Control module is shown below. The primary purpose of this block
is to coordinate CPU firmware interaction with internal UDB operation.

The status register is read-only and it allows internal UDB state to be read out onto the system bus
directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit
of these registers has programmable connections to the routing matrix.

136 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

A status interrupt example would be a case where a PLD or datapath block generated a condition,
such as a “compare true” condition, that is captured by the status register and then read (and
cleared) by CPU firmware.

11.2.2 Internal Interrupt Generation and Mask Register

In most functions, interrupt generation is tied to the setting of status bits. As shown in the figure
above, this feature is built into the status register logic as the masking (mask register) and OR
reduction of status. Only the lower 7 bits of status input can be used with the built-in interrupt
generation circuitry. By default the sc_io pin is in output mode and the interrupt may be driven to the
routing matrix for connection to the interrupt controller. In this configuration, the MSB of the status
register is read as the state of the interrupt bit.

The status mode register (CFGx) provides mode selection for each bit of the status register.
Transparent read is a mode in which a CPU read of the status register returns the state of the routing
input signal. Sticky mode, which is a clear on read, is a mode which the input status is sampled and
when the input goes high, the register bit is set and stays set regardless of the subsequent state of
the input. The register bit is cleared on a subsequent read by the CPU. The selected clock for this
block determines the sample rate. The rate should be greater than or equal to the rate at which the
status input signals are being generated.

11.2.3 Retention Across Sleep Intervals

The mask register is retention and will retain state across sleep intervals. The status register is non-
retention. It loses its state across sleep intervals and is reset to 0x00 on wakeup.

When large amounts of data are being streamed or rapid burst are being transmitted or received,
DMA transactions are the most reasonable method of transport. In these cases, interrupts to control
data flow should be performed using FIFO status registers. The following diagram shows a high-

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 137

Best Practices

level view of the datapath module. These FIFOs generate status that can be routed to interact with
sequencers, interrupts, or DMA requests.

11.2.4 FIFO Status

There are four FIFO status signals (f1_blk_stat, f1_bus_stat, f0_blk_stat, f0_bus_stat), two for each
FIFO, that can be independently configured for direction as an input buffer (system bus writes to the
FIFO, datapath internally reads the FIFO), or an output buffer (datapath internally writes to the FIFO,
and the system bus reads from the FIFO). The “bus” status is meaningful to the device system and
should be routed to the DMA controller as a DMA request.

The “bus” status is primarily intended for the system bus control for DMA interaction (when the
system should read or write bytes).

When implementing a buffer for transactions, a decision should be made with regard to how much
RAM will be used to store the data. If the size of the buffer is less than or equal to 4 bytes, the buffer
should be implemented with the FIFO hardware.

The buffering provided in the receive and transmit FIFOs allows the processing order of user
application logic to be independent of the order of data transfer on the bus. The receive FIFO also
absorbs the usually observed bursty nature of data on the interface. This FIFO could also decouple
the operating frequency of the user application logic from the frequency of the specific bus. Consider
both buffer overflow and underflow in the implementation.

138 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

11.2.5 Buffer Overflow

The receive FIFO should have enough space to accommodate all the pending (already scheduled or
to be scheduled) data transfer to the particular port to avoid the potential overflows. Ideally, a receive
FIFO design and status check mechanism should ensure that there are no data losses due to
overruns.

To solve the overflow problem, designers must employ a look-ahead indication of the FIFO status.
Thus, any port FIFO would indicate a satisfied status when the data path latency + status path
latency + maximum burst transfer is less than being full. This implies that the high watermark for a
FIFO must be set equal to data path latency + status path latency + maximum burst. Effectively, an
additional mandatory space after satisfied indication has to be provided in the port FIFO to avoid
buffer overflows.

11.2.6 Buffer Underflow

A receive port FIFO underflows when data falls below the low watermark and receives no data from
the other end through the interface, and eventually goes empty even though the transmit FIFO has
data to send for that port. This happens because the transmitter has exhausted the previously
granted allotment before it gets the next update, for example status starving or hungry from the
receiver. To prevent the underflow, the watermark of status indication must be set high enough so
that the transmitter responds to FIFO space available indication from the receiver before the
application logic drains the port data from the FIFO.

The time elapsed between the FIFO status indicating starving or hungry to get the data for that
particular port is the total path latency, which is the sum of status update latency + status path
latency + data scheduler latency and finally the data path latency. The first two numbers reflect the
amount of time required in getting the burst information built up at the transmitter. The last two
numbers define the amount of time required to get the data moved across the interface from transmit
FIFO to the receive FIFO over the particular link.

The buffer underflow depends on the maximum read rate of the port FIFO by the application logic. To
prevent underflow, software should program low watermark for each port FIFO, judiciously (that is,
large enough).

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 139

Best Practices

11.3 DMA

The Peripheral HUB (PHUB) is a programmable and configurable central hub within a PSoC 3 and
PSoC 5 device that ties the various on-chip system elements together utilizing standard Advanced
Microcontroller Bus Architecture (AMBA) high-performance bus (AHB). The PHUB essentially
utilizes a multi-layer AHB architecture allowing for simultaneous AMBA-lite style mastering. The
PHUB contains a DMA controller (DMAC) that can be programmed to transfer data between system
elements without burdening the CPU. PHUB contains logic that performs arbitration between DMAC
and the CPU for access to PHUB’s downstream spokes.

The diagram below illustrates the general connectivity between the CPU, PHUB, SYSMEM, TD/
CFGMEM and the downstream spokes.

The details with regard to the register map are contained in the PSoC® 3, PSoC® 5 Architecture
Technical Reference Manual (TRM). The points of concern here are that the DMA controller offloads
the CPU, it is a separate bus master, and that the DMAC arbitrates between multiple DMA channels.
The DMA handler and associated APIs are outlined in DMA Component datasheet.

The main points of this section is to consider how to construct a Component to use DMA, methods of
data transfer utilizing DMA, how to signal a transfer and what methods are best for transferring either
large amounts of data or small packets that may only consist of single byte. To reduce the complexity

DMAC

CHn
CSRsCHn

CSRsCHn
CSRs

SPOKE ARBITRATION

LOCAL SPOKE /
PHUB CSR

LOCMEM
ARB

CPU
INTERFACE

SYSMEM
TD/

CFGMEM

PHUB

CPU

SPOKES to
Peripherals

SPK0
(AHB)

CH ARB
DMAREQ[N:0]

140 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

of configuration a DMA wizard is provided for the end user. As part of the Component development
the capabilities of the Component with regard to DMA may be provided in an XML file.

11.3.1 Registers for Data Transfer

System bus connections are common to all UDBs and allow DMA access to registers and RAM in
the UDBs for both normal operation and configuration.

Each datapath module has six 8-bit working registers. All registers are CPU and DMA readable and
writable.

Each datapath contains two 4-byte FIFOs, which can be individually configured for direction as an
input buffer or an output buffer. These FIFOs generate status that can be routed to interact with
sequencers, interrupts, or DMA requests. For an input buffer, thesystem bus writes to the FIFO, and
datapath internals read the FIFO. For an output buffer, datapath internals write to the FIFO, and the
system bus reads from the FIFO.

For small transfers, the accumulator should be used especially when a single packet of data will be
transmitted or received and where computation on the data is necessary before another packet is
sent.

For large data transfers that require continuous streams of data, FIFOs are particularly useful. Along
with the FIFO status logic, continuous data streams can be maintained without the loss of data.

11.3.2 Registers for Status

There are four FIFO status signals, two for each FIFO: fifo0_bus_stat, fifo0_blk_stat, fifo1_bus_stat
and fifo1_blk_stat. The meaning of these signals depends on the direction of the given FIFO, which
is determined by static configuration. The “bus” status is meaningful to the device system and is
usually routed to the interrupt controller, DMA controller, or it could be polled through a status
register. The “blk” status is meaningful to the internal UDB operation and is normally routed to the
UDB Component blocks, such as a state machine built from PLD macrocells.

There are two status bits generated from each FIFO block that are available to be driven into the
UDB routing through the datapath output multiplexer. The “bus” status is primarily intended for the
system bus control for CPU/DMA interaction (when the system should read or write bytes). The
“block” status is primarily intended for local control to provide FIFO state to the internal UDB state

Type Name Description

Accumulator A0, A1

The accumulators may be a source for the ALU and destination of the ALU output.
They also may be loaded from an associated data register or FIFO. The
accumulators contain the current value of the function; for example, the count, CRC,
or shift. These registers are non-retention; they lose their value in sleep and are reset
to 0x00 on wakeup.

Data D0, D1
The data registers contain the constant data for a given function, such as a PWM
compare value, timer period, or CRC polynomial. These registers are retention. They
retain their value across sleep intervals.

FIFOs F0, F1

There are two 4-byte FIFOs to provide a source and destination for buffered data.
The FIFOs can be configured both as input buffers, both as output buffers, or one
input and one output buffer. Status signaling, which can be routed as a datapath
output, is tied to the reading and writing of these registers. Examples of usage
include buffered TX and RX data in SPI or UART and buffered PWM compare and
buffered timer period data. FIFOs are non-retention. They lose their contents in sleep
and the contents are unknown on wakeup. FIFO status logic is reset on wakeup.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 141

Best Practices

machines. The meaning of the status depends on the configured direction (Fx_INSEL[1:0]) and the
FIFO level bits.

FIFO level bits (Fx_LVL) are set in the auxiliary control register in working register space. Options
are shown in the following table.

11.3.3 Spoke width

The DMA controller transfers data on a spoke in sizes equal to the datawidth of the spoke. However,
AHB rules require all data transfers be aligned to the address boundary equal to the size of the
transfer. Which means ADR[1:0] of 32-bit transfers must equal 0b00, and ADR[0] of 16-bit transfers
must equal 0. The address can take on any value for 8-bit transfers. This means that if the overall
burst starts or ends on an address boundary that doesn’t equal the datawidth of the spoke, then this
creates a ragged start or end.

The following table defines the peripherals associated with a spoke and the width of the spoke.

Fx_INSEL
[1:0]

Fx_LVL Signal Status Description

Input 0 fx_bus_stat Not Full
This status is asserted when there is room for at least 1 byte
in the FIFO. This status can be used to assert a system
interrupt or DMA request to write more bytes into the FIFO.

Input 1 fx_bus_stat
At Least
Half Empty

This status is asserted when there is room for at least 2
bytes in the FIFO.

Input N/A fx_blk_stat Empty

This status is asserted when there are no bytes left in the
FIFO. When not empty, the Datapath function may consume
bytes. When empty the control logic may idle or generate
underrun status.

Output 0 fx_bus_stat Not Empty

This status is asserted when there is at least 1 byte
available to be read from the FIFO. This status can be used
to assert a system interrupt or DMA request to read these
bytes out of the FIFO.

Output 1 fx_bus_stat
At least Half
Full

This status is asserted when there is at least 2 bytes
available to be read from the FIFO.

Output N/A fx_blk_stat Full
This status is asserted when the FIFO is full. When not full,
the Datapath function may write bytes to the FIFO. When
full, the Datapath may idle, or generate overrun status.

PHUB Spokes Peripherals Spoke Datawidth

0 SRAM 32

1 IOs, PICU, EMIF 16

2
PHUB local configuration, Power manager, Clocks, Interrupt
controller, SWV, EEPROM, Flash programming interface

32

3 Analog interface, Decimator 16

4 USB, CAN, I2C, Timers, Counters, PWMs 16

5 DFB 32

6 UDBs group 1 16

7 UDBs group 2 16

142 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

The source spoke and destination spoke can be different sizes. The burst engine will use the FIFO
within the DMA controller as a funneling mechanism between the two spokes.

11.3.4 FIFO Dynamic Control Description

The configuration between internal and external access is dynamically switchable via datapath
routing signals. The datapath input signals d0_load and d1_load are used for this control.

Note In the dynamic FIFO control mode, d0_load and d1_load are not available for their normal use
in loading the D0/D1 registers from F0/F1.

In a given usage scenario, the dynamic control (dx_load) can be controlled with PLD logic or any
other routed signal, including constants. For example, starting with external access (dx_load == 1),
the CPU or DMA can write one or more bytes of data to the FIFO. Then toggling to internal access
(dx_load == 0), the datapath can perform operations on the data. Then toggling back to external
access, the CPU or DMA can read the result of the computation.

11.3.5 Datapath Condition/Data Generation

Conditions are generated from the registered accumulator values, ALU outputs, and FIFO status.
These conditions can be driven to the UDB channel routing for use in other UDB blocks, for use as
interrupts or DMA requests, or to globals and I/O pins. The 16 possible conditions are shown in the
following table:

Name Condition Chain? Description

ce0 Compare Equal Y A0 == D0

cl0 Compare Less Than Y A0 < D0

z0 Zero Detect Y A0 == 00h

ff0 Ones Detect Y A0 = FFh

ce1 Compare Equal Y A1 or A0 == D1 or A0 (dynamic selection)

cl1 Compare Less Than Y A1 or A0 < D1 or A0 (dynamic selection)

z1 Zero Detect Y A1 == 00h

ff1 Ones Detect Y A1 == FFh

ov_msb Overflow N Carry(msb) ^ Carry(msb-1)

co_msb Carry Out Y Carry out of MSB defined bit

cmsb CRC MSB Y MSB of CRC/PRS function

so Shift Out Y Selection of shift output

f0_blk_stat FIFO0 block status N Definition depends on FIFO configuration

f1_blk_stat FIFO1 block status N Definition depends on FIFO configuration

f0_bus_stat FIFO0 bus status N Definition depends on FIFO configuration

f1_bus_stat FIFO1 bus status N Definition depends on FIFO configuration

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 143

Best Practices

11.3.6 UDB Local Bus Configuration Interface

The following figure illustrates the structure of the interface of the configuration state to the UDB
local bus interface.

There are three types of interfaces: the PLD, the configuration latches, and the DP configuration
RAM. All configurations are writable as 16 bits to support DMA or as 16-bit processor operations.
They are also separately writable as upper (odd addresses) and lower (even addresses) bytes. The
PLD has unique read signals which implement RAM read and write timing. The CFG registers and
DP CFG RAM share the same read and write control signals.

11.3.7 UDB Pair Addressing

Methods of data transfer using DMA depend on how the working and configuration registers are
configured. There are three unique address spaces in the UDB pair.

 8-bit Working Registers – A bus master that can only access 8-bits of data per bus cycle can use
this address space to read or write any UDB working register. These are the registers that CPU
firmware and DMA interacts with during the normal operation of the block.

 16-bit Working Registers – A bus master with 16-bit capability can access 16-bits per bus cycle to
facilitate the data transfer of functions that are inherently 16-bits or greater. Although this address
space is mapped into a different area than the 8-bit mode, the same 8-bit UDB hardware
registers are accessed, with two registers responding to the access.

 8 or 16-bit Configuration Registers – These registers configure the UDB to perform a function.
Once configured, are normally left in a static state during function operation. These registers
maintain their state through sleep.

144 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

11.3.7.1 Working Register Address Space

Working registers are accessed during the normal operation of the block and include accumulators,
data registers, FIFOs, status and control registers, mask register, and the auxiliary control register.
The following figure shows the registe-r map for one UDB.

Note that UDBs can be accessed as 8- or 16-bit objects and each of these access methods has a
different address space.

On the left, the 8-bit address scheme is shown, where the register number is in the upper nibble and
the UDB number is in the lower nibble. With this scheme, the working registers for 16 UDBs can be
accessed with an 8-bit address.

On the right is the 16-bit address, which is always even aligned. The UDB number is 5 bits instead of
4 due to the even address alignment. The upper 4 bits is still the register number. A total of 9
address bits are required to access 16 UDBs in 16-bit data access mode. Working registers are
organized into banks of 16 UDBs.

11.3.7.2 8-Bit Working Register Access

In 8-bit register access mode, all UDB registers are accessed on byte-aligned addresses, as shown
in the following figure. All data bytes written to the UDBs are aligned with the low byte of the 16-bit
UDB bus.

Only one byte at a time can be accessed in this mode and the PHUB will naturally align the valid odd
(upper) or even (lower) byte back to the processor or DMA.

A0
1xh

UDB Working Base +
0xh

A1

D0

D1

F0

F1

ST

CTL/CNT

MSK/PER

ACTL

MC

2xh

3xh

4xh

5xh

6xh

7xh

8xh

9xh

Axh

Bxh

2xh

4xh

6xh

8xh

Axh

Cxh

Exh

10xh

12xh

14xh

16xh

0xh

8-bit
addresses

16-bit
addresses

A0

UDB 1

A1

A0

UDB 0

A1

A0

UDB 2

A1

Low byteLow byteLow byte

16-bit UDB Array data bus

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 145

Best Practices

11.3.7.3 16-bit Working Register Address Space

The 16-bit address space is designed for efficient DMA access (16-bit datawidth). There are two
modes of 16-bit register access: “default” mode and “concat” mode.

As shown in the following figure, the default mode accesses a given register in UDB ‘i’ in the lower
byte and the same register in UDB ‘i+1’ in the upper byte. This makes 16-bit data handling efficient in
neighboring UDBs (address order) that are configured as a 16-bit function.

The following figure shows the concat mode, where the registers of a single UDB are concatenated
to form 16-bit registers. In this mode, the 16-bit UDB array data bus has access to pairs of registers
in the UDB. For example, an access at A0, returns A0 in the low byte and A1 in the high byte.

11.3.7.4 16-bit Working Register Address Limitation

There is a limitation in the use of DMA with respect to the 16-bit working register address space. This
address space is optimized for DMA and CPU access to a 16-bit UDB function. It is inefficient for use
when the function is greater than 16-bits. This is because the addressing is overlapped as shown in
the following table:

When the DMA transfers 16 bits to address 0, the lower and upper bytes are written to UDB0 and
UDB1, respectively. On the next 16-bit DMA transfer at address 2, you will overwrite the value in
UDB1 with the lower byte of that transfer. To avoid having to provide redundant data organization in

Address Upper byte goes to Lower byte goes to

0 UDB1 UDB0

2 UDB2 UDB1

4 UDB3 UDB2

A0

UDB 1

A1

A0

UDB 0

A1

A0

UDB 2

A1

Low byte

16-bit UDB Array data bus

16-bits at
UDB 0

High byte Low byte High byte Low byte

16-bits at
UDB 1

16-bits at
UDB 2

A1

UDB i

A0

16-bits at
UDB i

16-bit UDB Array data bus

D1 D0

F1 F0

CTL/CNT ST

ACTL MSK/PER

00h MC

Low byteHigh byte

146 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

memory buffers to support this addressing, it is recommended that 8-bit DMA transfers in 8-bit
working space be used for functions over 16 bits.

11.3.8 DMA Bus Utilization

The DMA controller has a dual context in that they can be pipelined and thus can act in parallel.
Generally, the spoke buses can achieve virtually 100% utilization for AHB bus cycles attributed to
moving data.

The overhead of processing a channel is generally hidden in the background of data bursting. The
arbitrating, fetching, or updating for a channel can occur in the background of the data bursting of
another channel. Additionally, the data bursts of one channel can overlap with the data bursts of
another channel, provided there is no spoke contention or contention for the source (SRC) or
destination (DST) engines of the DMA controller.

11.3.9 DMA Channel Burst Time

Channel burst time is defined as the number of clocks it takes from the first request on the SRC
spoke to the final ready on the DST spoke. An ideal burst involves an initial control cycle followed by
a burst of data cycles (with subsequent control cycles pipelined in parallel). Thus an ideal burst on a
spoke involves N+1 clock cycles to transfer N pieces of data, where N = burst length / peripheral
width.

There are multiple variables that can affect this number:

 Existence of another channel context ahead in the DMA controller context pipe and the burst
conditions that remain for that channel.

 The burst conditions of the channel:

 Competition against the CPU for use of the spoke

 SRC/DST peripheral readiness

 SRC/DST peripheral widths

 Length of the burst

 Ragged starts and ends

 Intra-spoke vs. inter-spoke DMA

Intra-spoke DMA requires the entire SRC burst to first be buffered in the DMA controller FIFO before
the data is then written back out to the same spoke. In that case there are two of these N+1 length
bursts that occur, and thus the general formula for an ideal intra-spoke burst is 2N+2.

Inter-spoke DMA allows the SRC and DST bursts to overlap. As data is being read from the SRC
spoke and written into the DMA controller FIFO, the DST engine can write available FIFO data to the
DST spoke. As a result of this overlapping, inter-spoke DMA is more efficient. The net result is that
there are three overhead cycles to move a single piece of data from one spoke to the other. The
initial control cycle on each spoke plus one “redundant” data cycle (it takes one data cycle on each
spoke to move each piece of data). Thus the general formula for an ideal inter-spoke DMA burst is
N+3 to move N pieces of data.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 147

Best Practices

The following table shows the cycle times for some example ideal bursts:

11.3.10 Component DMA capabilities

Any Component that wants to provide its ability to work with the PSoC Creator DMA Wizard needs to
have an XML file that includes its DMA capabilities. The XML format must include the ability to reflect
instance specific information. This should be done with a static XML file that can have settings that
are based on parameters set for the instance. See Add/Create DMA Capability File on page 91.

Note You cannot add more than one DMA Capability file to a Component.

11.4 Low Power Support

As a general rule, Components provide support for low power by providing APIs to retain non-
retention registers and user parameters that would be lost during the exit from a low power mode. An
API to save registers and parameters is called prior to entering a low power mode. Then an API is
called after exiting the low power mode to restore registers and parameters. The specific registers to
save are a function of the registers used in a design. The TRM specifies which registers are non-
retention. Only the non-retention registers need to be saved when entering a low power mode.

11.4.1 Functional requirements

Provide a static data structure, based on the Component, to maintain the non-retention register
values. The low power mode functions are implemented only when necessary. This gives consistent
interfaces for all Components. Templates are defined for both the data structure and the functions
required to initialize, save/restore, and sleep/wakeup. All of these functions are global. The save/
restore functions may be used outside of the low power context.

11.4.2 Design Considerations

Define low power retention functions when necessary. These functions are placed in a separate file,
`$INSTANCE_NAME`_PM.c. This allows the .o file with the static data structure to be removed at
link time if the application does not use the low power functionality. In addition, the
`$INSTANCE_NAME`_Enable() and `$INSTANCE_NAME`_Stop() functions enable/disable the
alternate active register enables. This provides a mechanism to automatically enable and disable the
alternate active template.

11.4.3 Firmware / Application Programming Interface Requirements

11.4.3.1 Data Structure Template

typedef struct _`$INSTANCE_NAME`_BACKUP_STRUCT
{
 /* Save Component’s block enable state */

Data Transactions

(Spoke-Sized)

Intra-Spoke DMA

Burst Phase

(Clock Cycles)

Inter-Spoke DMA

Burst Phase

(Clock Cycles)

1 4 4

2 6 5

3 8 6

N 2N+2 N+3

148 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

 uint8 enableState;

 /* Save Component’s non-retention registers */

} `$INSTANCE_NAME`_BACKUP_STRUCT;

11.4.3.2 Save/Restore Methods

Save non-retention register values to the static data structure. Save only the specific Component
register values.

`$INSTANCE_NAME`_SaveConfig()
{
/* Save non-retention register’s values to backup data structure. */
}

Restore non-retention register values from the static data structure. Restore only the specific
Component register values.

`$INSTANCE_NAME`_RestoreConfig()
{
/* Restore non-retention register values from backup data structure. */
}

Save the enable state of the Component. Use this state to determine whether to start the
Component on wake-up. Stop the Component and save the configuration.

`$INSTANCE_NAME`_Sleep()
{
/* Save Component’s enable state – enabled/disabled. */
 if(/* Component’s block is enabled */)
 {
 backup.enableState = 1u;
 }
 else /* Component’s block is disabled */
 {
 backup.enableState = 0u;
 }
 `$INSTANCE_NAME`_Stop();
 `$INSTANCE_NAME`_SaveConfig();
}

Restore the Component configuration and determine if the Component should be enabled.

`$INSTANCE_NAME`_Wakeup()
{
 `$INSTANCE_NAME`_RestoreConfig();
 /* Restore Component’s block enable state */
 if(0u != backup.enableState)
 {
 /* Component’s block was enabled */
 `$INSTANCE_NAME`_Enable();
 } /* Do nothing if Component’s block was disabled */
}

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 149

Best Practices

11.4.3.3 Additions to Enable and Stop Functions

Enable the Component's alternate active register enable.

`$INSTANCE_NAME`_Enable()
{
 /* Enable block during Alternate Active */
}

Disable the Component's alternate active register enable.

`$INSTANCE_NAME`_Stop()
{
 /* Disable block during Alternate Active */
}

11.5 Component Encapsulation

11.5.1 Hierarchical Design

When reusing a design in a hierarchical design system, you can take advantage of the following
features:

To make it easy to reuse a design with PSoC Creator, it should be encapsulated as a PSoC Creator
Component. A design can be considered for encapsulation and reuse if it meets one or more of the
following criteria:

 Implements a specific function. The general rule is that it should “do just one thing and do it well.”

Designs can incorporate other designs. A building block approach
means that you do not need to know or spend time on the internal details
of the design – just the interface to that design. The interface can be
hardware, software, or both.

Single or multiple instances of a design are easy to add and organize at
multiple levels.

Parameterization allows designs to be reused, but have different
behavior or characteristics for different applications.

150 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

 Has a limited and relatively small set of inputs and outputs, in the form of either hardware
terminals or API calls. The general rule is the fewer the better, but not so few that essential
functionality is reduced.

The following pages provide a few examples:

In one of the simpler examples of when to encapsulate IP as a Component, consider what you might
do if you are required to have a window comparator in your design. A window comparator activates
when an input voltage is between two compare voltages. With PSoC Creator you would most likely
design it as follows:

This design is a good candidate for encapsulation as a Component. It implements just one specific
function: a window comparator. Plus, it has a limited and small set of inputs and outputs. It would
also have a small API to start the comparators. So the basic, essential functionality of the design can
be encapsulated into a Component, with a symbol, as follows:

When encapsulating a design, an important decision is what to leave out of the Component. In the
above example, the VDACs could have been brought into the Component. However, they really are
not part of the essential design functionality, which is simply comparing a voltage to two reference
voltages. The reference voltages could be provided by VDACs or by some other source. So in this
case it is better practice to leave the VDACs out.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 151

Best Practices

With encapsulation your top-level design becomes simpler:

And in many cases it is easier to scale the design:

152 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

The following the mag card reader example is more complex. In this design, there is a central ADC
and reference section along with multiple copies of circuitry for reading a single channel:

The basic design functionality in this case is converting the analog inputs from the channel into a
form that is readable by a digital system. Again, because it is a well-defined and limited function it is
a good candidate for encapsulation:

Again, you need to look at what to leave out of the Component. The original design uses two SIO
pins with different thresholds. These could have been brought into the Component but it is better
practice to keep pins at the top-level design. Also, the basic design requires only the digital signals
CH_hi and CH_lo, and not necessarily their sources.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 153

Best Practices

Also, since PSoC 3/5 opamps are closely associated with specific device pins, it may actually be
better to keep the opamp out of the Component.

Finally, the design makes use of limited analog resources and routing, and multiple instances may
not fit in some smaller PSoC 3/5 devices. This fact, along with possible voltage, temperature, or
speed limitations should be communicated to the user. For example, what frequency should PeakClk
be? It is known at the top level of the original design, but perhaps not known when the Component
is reused.

This brings up an interesting issue: when NOT to encapsulate a design. If a design meets one or
more of the criteria listed below, it may not be good practice to encapsulate it. If it is encapsulated
then the relevant issues and limitations should be communicated such that the user becomes aware
of the issues as soon as an attempt is made to reuse the Component.

 Incorporates critical resources in the PSoC 3/5, thereby making those resources unavailable in
the higher-level design. Specific topics include:

 usage of single-instance fixed-function blocks such as ADC_DelSig, CAN, USB, and I2C

 too much usage of more abundant resources such as UDBs, comparators, DACs, opamps,
timers, DMA channels, interrupts, pins, clocks, etc.

 too much usage of less obvious resources such as analog or DSI routing, flash, SRAM or
CPU cycles

 Operates only under certain conditions, for example: CPU or bus_clk speed, or Vdd levels, or
only with certain parts such as the PSoC 5 family.

 Multiple instances of the IP cannot be implemented.

11.5.2 Parameterization

In PSoC Creator, Components can be parameterized. That is, the behavior of an instance of a
Component can be set at build time (typically by using a dialog box). Both hardware and software
behavior can be set up by parameterization. Parameterization should be used in cases where:

 Different instances of the IP behave slightly differently but the overall functionality is unchanged.
For example, an alert output on a fan controller may be set to be active high or active low.

 The differences in behavior are not expected to change at run-time.

If parameterization causes large changes to the functionality of different instances, then you should
consider encapsulating the design in multiple Components. PSoC Creator allows multiple
Components to be packaged in a single library project, so different versions of the Component can
be kept together. For example, a single fan controller Component might have a parameter for
number of fans to be controlled. Fan controllers with two different interfaces, like SPI and I2C, might
be two separate Components in the “Fan Control” library project.

11.5.3 Component Design Considerations

11.5.3.1 Resources

Components should avoid embedding pin Components. Terminals should be used instead; the user
can then connect the pins to the Component symbol at a higher level.

Clock Components may or may not be encapsulated in a Component. The advantage of not
embedding a clock is that multiple Components can be connected to the same clock, thereby
conserving clock resources. A Component can include a parameterization option to make a clock
internal or external.

154 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

Interrupts and DMA channels may or may not be encapsulated in a Component. A Component may
generate a “have data” signal that could be connected to either an IRQ or a DRQ, in which case the
interrupt and DMA should not be embedded in the Component.

11.5.3.2 Power Management

Components should be designed to support power management issues, such as sleep, hibernate,
and wakeup. APIs should include appropriate functions. Cypress-provided Components offer many
examples of how to implement a power management API.

11.5.3.3 Component Development

PSoC Creator Components are basically just containers. They cannot be built nor can they be
installed in a target device. They are intended to be linked into standard PSoC Creator projects
which are then built and installed.

Components can contain several different file types: symbol (.cysym), schematic (.cysch), Verilog
(.v), firmware source code (.c, .h, .a51, etc.), and documentation (.pdf, .txt). Components can also
reference other Components, thus enabling hierarchical design techniques.

Components developed under this specification should have as a minimum a symbol file and a
datasheet file. All other file types are optional depending on the function of the Component. For
example, a hardware-only Component could have just a schematic or Verilog file, whereas a
firmware-only Component could have just a .h and .c file for an API.

Reference Component Symbol

The symbol should always have an instance name `=$INSTANCE_NAME` (backward single quotes)
annotation included. Other annotations should be added such that the user may more rapidly
understand the function of the Component.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 155

Best Practices

Component Catalog Placement

The symbol property Doc.CatalogPlacement controls where the user may find your Component in
the PSoC Creator Component Catalog. A consistent tab and tree node naming scheme should be
developed, especially if you create multiple Components. Note that using fewer tabs and more tree
nodes will create a better fit in the Component Catalog on most users’ screens.

For more information, see Define Catalog Placement on page 38.

Component datasheet

To properly document your Component, a datasheet should be included. The datasheet should
include the design considerations mentioned above. For information about how to add a datasheet,
see Add/Create Datasheet on page 81.

Component Versioning

The Component name can include version information, which is done by appending the following to
the Component name:

“_v<major_num>_<minor_num>_<patch_level>”

Both <major_num> and <minor_num> are integers that specify the major and minor version
numbers respectively. <patch_level> is a single, lower case, alpha character. Components should be
versioned. For information about versioning, see Component Versioning on page 12.

11.5.3.4 Testing Components

Reusable designs are encapsulated as Components in a PSoC Creator library project. However
neither a library project nor a Component by itself is very useful. Library projects cannot be built,
programmed or tested. So one or more standard projects should be developed along with the
Component, for the purpose of testing or demonstrating the functionality of the reusable design in
that Component.

The reference Component should be included with each of its parameters set to as many different
settings as possible. Note that in order to do this either multiple instances of the Component may
need to be used or multiple test / demo projects may need to be created. All functions in the
Component’s API should be called at least once. All macros should be used at least once.

156 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

As much as possible, the test projects should support both PSoC 3 and PSoC 5, in various
configurations. For example, standard and bootloadable, debug and release, different PSoC 5
compilers, and different compiler optimization settings.

11.6 Verilog

Many digital Components use Verilog to define the implementation of the Component. For more
information, see Implement with Verilog on page 55.

This Verilog must be written in the synthesizable subset of Verilog. In addition to conforming to the
Verilog subset, there are additional guidelines that should be followed when creating a Verilog-based
Component. Many of these guidelines are practices accepted as best practices for any synthesis
tool. Additional guidelines are specific recommendations related to the development of a PSoC
Creator Component.

11.6.1 Warp: PSoC Creator Synthesis Tool

When processing any digital logic in a design, PSoC Creator will automatically run the Warp
synthesis tool included as part of the PSoC Creator installation. This is a PSoC-specific version of
the Warp synthesis tool that has been used in the past with Cypress programmable logic devices.

The specific synthesizable subset of Verilog supported by PSoC Creator is specified in the Warp
Verilog Reference Guide. This synthesizable subset is similar to the subset implemented in other
Verilog synthesis tools. Refer to the guide for a detailed description of the Verilog constructs
supported.

The synthesizable portion of the Verilog design will be synthesized into PLD logic. The remaining
UDB resources can be instantiated into a Verilog design, but they are never inferred by the synthesis
process.

11.6.2 Synthesizable Coding Guidelines

11.6.2.1 Blocking versus Non-Blocking Assignments

The Verilog language has two forms of assignment statements. The blocking assignment statement
assigns the value immediately before progressing to the next statement. The non-blocking
assignment statement assigns the value later when time progresses. These two types of
assignments have a specific meaning from a simulation perspective. When these assignments are
considered from a synthesis perspective and the resulting hardware, the results can differ. The best
practices for a synthesizable design were developed so that the simulation results and the synthesis
results match.

Implement sequential logic using non-blocking assignments

This rule causes the simulation results of clocked logic to match the hardware implementation. In the
hardware implementation all registers clock in new state before that state is used to compute the
next state.

always @(posedge clk)
begin

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 157

Best Practices

 state <= nextState;
end

Implement combinatorial logic in an “always” block with blocking assignments

This rule causes the simulation results to assign values to signals immediately as the always block is
evaluated. This matches the hardware implementation when the delay through combinatorial logic is
ignored. In this case results of one level of logic are used to compute the next level of logic
immediately.

always @(A or B or C)
begin
 X = A & B;
 Y = X & C;
end

Do not mix blocking and non-blocking assignments in the same always block

This rule implies that combinatorial logic that requires more than a single assignment to implement
should be described in a block separate from a sequential always block. This combinatorial logic can
be implemented in a separate combinatorial block or in a continuous assignment statement.

Do not make assignments to the same variable in more than one always block

The synthesis engine in PSoC Creator will enforce this rule and generate an error if this rule is
violated.

11.6.2.2 Case Statements

In Verilog there are three forms of a case statement: case, casex, and casez. The following rules
should be followed when coding with these statements.

Fully define all case statements

This is best implemented by placing a default case into all case statements. That will automatically
satisfy this rule. Including a default statement even when all cases are already covered will cause

statenextstate

clk

A

B

C

X

Y

158 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

this rule to continue to be satisfied when case-items are changed later in the development of the
code. If a case-item is removed or the width of the case is changed, then the default statement is
already present.

This rule is particularly important within a combinatorial always block. Including a default condition
where the combinatorial result is assigned prevents the synthesis of latches in the design.

Use casez instead of casex

The casex and casez statements are similar and synthesize to the same result. The difference is in
the results generated during simulation. The casex statement will match input values of “x” or “z”
when a case-item specifies a don’t care bit, but with the casez statement only the “z” value will match
don’t care bits in case-items. With the casex statement, simulations can miss uninitialized value
design errors. With the casez statement this isn’t a concern since PSoC designs will not have “z”
values internal to the synthesizable portion of the design.

Use the “?” for don’t care bits in casez statements

This rule has no impact on the synthesizable code. It is just for clarity to indicate that the intention is
that that the specified “?” bits are don’t care. The alternate method where a “z” is used does not
indicate the intent.

Do not use casez statements with overlapping conditions

A casez statement with overlapping case-items will result in the synthesis of a priority encoder. The
resulting logic is identical to the simulation results, but it can be difficult to determine the intended
logic. The use of if-else if-else statements more clearly conveys the priority encoder intent.

11.6.2.3 Parameter Handling

Using parameters allows a Verilog instance to be synthesized based on the specific requirement of a
Component instance.

Passing parameters to a Component

The parameters for a Component configured on the symbol can optionally be passed to the Verilog
instance by setting “Hardware” in the Misc settings for the parameter to True.

When a parameter is passed to a Verilog module the parameter setting will be applied before
synthesis is performed. The result is that the specific instance will be synthesized based on the

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 159

Best Practices

parameter settings. This method is appropriate for settings that can be made at build time, but can’t
be used for settings that will need to be determined at run time. Settings that can be changed at run
time will need to be controlled by software through the datapath or control registers. Determining
which parameters should be static and which need to be dynamic (run time changeable) will
influence the complexity and resource requirements of the Component.

A Verilog based Component that has a Hardware parameter will get access to that parameter value
with a parameter statement. This parameter statement will automatically be created in the Verilog
template that can be created automatically from the symbol. The initial value will always be
overridden with the value set for the specific instance of the Component.

parameter Interrupt = 0;

Generate statements

Often the value of a parameter will result in the need for significantly different Verilog code based on
that value. This functionality can be implemented using a Verilog generate statement. For example if
a Component can have either an 8-bit or 16-bit implementation, that will result in the need to
instantiate either an 8-bit or 16-bit datapath Component. The only method to implement that
functionality is a generate statement.

parameter [7:0] Resolution = WIDTH_8_BIT;

generate
if (Resolution == 8) begin : dp8
 // Code for 8-bit
end
else begin : dp16
 // Code for 16-bit
end
endgenerate

Passing parameters to module instances

A Verilog design will need to pass parameters to other modules that are instantiated in the design.
Parameters are required by many of the standard hardware modules.

There are two ways that parameters can be passed in Verilog. The original method is the defparam
statement. In the other method, from the Verilog-2001 specification, parameters can be passed
using named parameters. The parameter names and values are included after a “#” in the module
instance. It is recommended that parameters always be passed using named parameters.

cy_psoc3_statusi #(.cy_force_order(1),
 .cy_md_select(7’h07), .cy_int_mask(7’h07))
stsreg(
 .clock(clock),
 .status(status),
 .interrupt(interrupt)
);

Parameterized datapath instances

Datapath instances are configured based on a single complex configuration parameter. For multi-
byte datapath configurations or for Components that use generate statements to support multiple
possible datapath widths, it is often the case that the same configuration value will be used for

160 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

multiple configuration parameters. Duplicating the same information is prone to error and difficult to
maintain, so a parameter value can be used so that the configuration data is only present in one
place.

parameter config0 = {
 `CS_ALU_OP_PASS,
 // Remainder of the value not shown here
};

cy_psoc3_dp8 #(.cy_dpconfig_a(config0)) dp0 (
 // Remainder of the instance not shown here
);

11.6.2.4 Latches

Latches should be avoided in a PSoC design. Some programmable logic devices have latches built
into their architecture. That is not the case for PSoC devices. Each macrocell can be combinatorial
or registered on a clock edge. If a latch is created in a PSoC design, the latch will be implemented
using cross coupled logic. The use of latches limits the capability to do timing analysis due to the
loop construct that is created. The combinatorial latch based implementation can also have timing
issues since the length of the feedback paths is not controlled.

It is often the case that when a latch is present in a design, that a latch was not the intended
functionality. A latch will be inferred during synthesis for any output from a combinatorial always
block where there is at least one path through the block where the output is not assigned a value.
This can be avoided by assigning to each output in every if-else clause and including a final else
clause in an if-else chain. Alternatively this can be avoided by assigning a default value for each
output at the top of the always block.

11.6.2.5 Reset and Set

The following rules should be followed for reset and set signals. The rules and description use the
term reset, but this applies to both reset and set functionality.

Use synchronous reset if possible

An asynchronous reset acts like a combinatorial path from the control signal to the output of all
registers that it impacts. By using an asynchronous reset, the timing from the reset signal
propagated through the logic becomes the limitation on timing. When a synchronous reset is used,
then the only additional timing analysis is simply the relationship of the reset signal with respect to
the clock.

Use synchronous reset when the clock is free running

The only case where an asynchronous reset should be required is when the clock is not free
running. If a register needs to be reset while the clock is not running, then an asynchronous reset
signal will be required. If the clock is a free running clock, then the synchronous more of reset will
have the same result without the added timing issues of an asynchronous signal.

Asynchronous reset and set can not be used for the same register

The hardware implementation for the PLD macrocells uses a single signal for asynchronous reset
and set. A selection is made to use this signal as a reset, a set or not use the signal. The option of
having both an asynchronous reset and set is not available in the hardware.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 161

Best Practices

11.6.3 Optimization

11.6.3.1 Designing for Performance

The performance of a typical digital Component is determined by the longest combinatorial path
between two registers. The time taken by that combinatorial path is determined by the mapping of
the Verilog design to the available hardware.

Registering the dynamic configuration address

The longest path in a design that uses a datapath is often the path starting at a datapath accumulator
or macrocell flip-flop that then goes through combinatorial logic (ALU, condition generation, PLD
logic), and finally is used as the dynamic configuration address. To increase performance, this long
path can often be split into two shorter paths. The natural place to insert a register in this path is
often times before the dynamic configuration input. In many cases this input is driven by a macrocell
output. Since all macrocell outputs have an optional register, making this output registered does not
increase the resources used for the Component. Pipelining in this way does change the operation of
the Component, so this type of implementation should be part of the initial architecture definition of
the Component.

Registering the conditional outputs

Much like every macrocell in the PLD has an available flip-flop that can be optionally used, each of
the conditions generated by the datapath is available as a combinatorial signal or as a registered
value. These registers can be used without any resource usage impact to pipeline a design.

Registering outputs

Depending on the typical usage model for a Component, it can be beneficial to register the outputs
of the Component. If there is more than one output and they are sent to pins, then registering these
outputs will result in more predictable timing relationship between the output signals. If the outputs
from the Component are used to feed another Component, then the performance of the system will
be dependent on the output timing from this Component and the input timing of the destination
Component. If the outputs are registered, the output portion of that path will be minimized.

Split PLD paths

Each PLD has 12 inputs and 8 product terms. If an output requires more inputs or product terms than
can be implemented in a single PLD, the equation for the output will be split into multiple PLDs. This
will add a PLD propagation delay and routing delay for every additional level of PLD path required.
To improve performance any of these levels could be calculated in a pipelined fashion. This can be
done without increasing resources since registers are available for every macrocell output.
Pipelining will however change the timing relationship for the logic.

To determine the number of inputs that are needed to calculate a specific output all the inputs that
are used in if statements, case statements and in the assignment statement for a particular output
need to be counted.

11.6.3.2 Designing for Size

Typically the size of the programmable digital portion of a design is either limited by the PLD
resources or by the datapath resources. The equivalent logic functionality of the datapath resources
is much larger than the logic available in the PLD array. If a datapath implementation is possible,
then the that implementation is likely the most resource efficient implementation method. When

162 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

building logic for the PLD, the specific architecture of the PSoC PLD must be taken into
consideration.

Working with the 12 input PLD architecture

The PSoC PLD has 4 outputs and 12 inputs. When the design is synthesized, the number of inputs
required for any one output is limited to 12. If the final output requires more than 12 inputs, then the
function is broken into multiple logic pieces where each requires 12 inputs or less. After all the logic
has been split into outputs requiring 12 or less inputs, this logic is packed into PLDs. Ideally each
PLD will be used to produce 4 outputs. This will only be possible if the equations for 4 outputs can be
found that when combined only need 12 inputs. If for example a single output requires all 12 inputs,
then the only other outputs that can also be placed in that PLD will need to only require those same
inputs.

The first step is to build the Component and observe the average statistics for the packed PLDs from
the report file.

If the average number of macrocells is significantly below 4.0 and the number of inputs is
approaching 12.0, then the number of inputs required is the limiting factor in your design. To improve
the packing, the number of inputs required will need to be reduced.

In some cases this can be done by restructuring the equations to consolidate a group of inputs to a
single input. For example, if a multi-bit comparison is an input, then that can be replaced by a single
result input. If this value is used to calculate multiple outputs (a multi-bit register), then forcing a
specific partition of the logic can result in significant size reduction. To force a signal to be the output
of a macrocell, use the cy_buf Component. The output of a cy_buf will always be a macrocell output.

wire cmp = (count == 10’h3FB);
cy_buf cmpBuf (.x(cmp), .y(cmpOut));

11.6.4 Resource choice

A Verilog Component implementation can use various resources that are available in the PSoC UDB
architecture. Which resource to choose depends on the functionality required. All digital
Components will use PLD logic. Some Components will also use datapath instances. All synthesized

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 163

Best Practices

logic will be placed in PLDs. Datapath implementation must be done by including a datapath
instance in the Verilog design.

11.6.4.1 Datapath

The datapath resource has many times the equivalent logic gate capability as the PLD resource, so
if applicable to the application the datapath resource should be the first choice.

Typical datapath applications

 Any operation where a FIFO is required. The two datapath FIFOs are the only FIFO path in the
programmable digital system. For some designs the datapath can be used just to add the FIFO
functionality to a PLD based hardware design.

 Most counting functions including increment, decrement or stepping by a constant. Registers are
available to count, preload, compare and capture.

 Parallel to serial and serial to parallel conversions where the parallel connection is on the CPU
side and the serial connection is on the hardware side.

Limitations of the datapath

 Parallel input into the datapath is limited. This restricts the ability to use the datapath where other
hardware needs to provide a parallel value. Alternatives to parallel hardware loading may be
possible. If enough cycles are available, then a value can be serially shifted in. If the CPU or DMA
can get access to the value, then they can write the value to a FIFO or register in the datapath.

 Parallel output is possible, but the parallel output value is always the left input to the datapath
ALU. The left input to the ALU can only be A0 or A1, so that limits the output to being A0 or A1,
and it restricts the ALU operation that can be performed while using parallel output to also use
that value as the left input of the ALU function.

 Only one ALU function can be performed at a time. If multiple operations are required, then a
multi-cycle implementation using an multiple of the effective clock may be possible.

 There are 8 dynamic operations available. This is typically enough operations, but for some
complex multi-cycle calculations (shift, add, inc) this can be a limitation.

 Only 2 registers are read/writable by the datapath. There are up to 6 register sources (A0, A1,
D0, D1, F0, F1), but only 2 registers that can be written and then read back (A0, A1).

164 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Best Practices

11.6.4.2 PLD Logic

The PLD logic resource is the most flexible digital hardware resource.

Typical PLD applications

 State machines

 Small counters (<= 4 bits) or counters where parallel input and output to other hardware are
required.

 General purpose combinatorial logic

Limitations of the PLD

 The PLD does not have a direct path from or to the CPU. To get data from the CPU a control
register is used. To send data to the CPU a status register is used.

 Maximum number of register bits equal to the number of UDBs * 8 (depends on the selected
device). The control and status registers can be used to augment this number of bits, but neither
of those resources provides a register that can be both written and read by the PLD.

 12 input bits per PLD limits the efficiency and performance of wide functions. For example a wide
mux function does not map well into the PLD.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 165

A. Expression Evaluator

The PSoC Creator expression evaluator is used to evaluate expressions in PSoC Creator (except
those in the debugger). This includes parameter values, expressions in strings, and code generation
templates. The expression evaluation language is similar to the Perl 5 language. It borrows most of
its operators, including their precedence, but adds a different type system, which is better suited to
PSoC Creator application requirements.

A.1 Evaluation Contexts

There are two basic evaluation contexts: a document context, and an instance context. A document
context consists of the formal and local parameters from the document, as well as the document
properties. An instance context consists of the formal and local parameters of the instance, and the
document properties of the referenced SYMBOL.

The evaluation of local and formal parameters was discussed in Formal versus Local Parameters on
page 13. Annotations can have embedded expressions. Most annotations are evaluated in the
document context. Annotations associated with instances are evaluated in the instance context.

A.2 Data Types

The expression evaluator includes the following first class types:

 bool Boolean (true/false)

 error The error type

 float Floating point, double precision

 int8 8-bit signed integer

 uint8 8-bit unsigned integer

 int16 16-bit signed integer

 uint16 16-bit unsigned integer

 int32 32-bit signed integer

 uint32 32-bit unsigned integer

 string Character string

A.2.1 Bool

Legal values include true and false.

A.2.2 Error

Values of the error type may be created automatically by the system, or by end users. This provides
a standard means by which evaluation expressions can generate custom errors.

166 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Expression Evaluator

A.2.3 Float

64-bit double precision IEEE floating point. Written as [+-] [0-9] [.[0-9]*]? [eE [+-]? [0-9]+]

Legal: 1, 1., 1.0, -1e10, 1.1e-10

Illegal: .2, e5

A.2.4 Integers

Sized, signed, and unsigned integers. Integers may be expressed in any of the following three
bases:

 hexadecimal – starts with 0x

 octal – starts with 0

 decimal – all other sequences of digits

Unsigned integer literals are written with a “u” suffix.

The following table shows the valid values for each specific type.

A.2.5 String

Sequences of characters, enclosed in double quotes (“). Stored as .NET strings internally (UTF-16
encoded Unicode). Currently, only ASCII characters are recognized by the parser. \\ and \” are the
only supported escape sequences in strings.

Type Valid Values

INT8 -128 to 127

UINT8 0 to 255

INT16 -32,768 to 32,767

UINT16 0 to 65535

INT32 -2,147,483,648 to 2,147,483,647

UINT32 0 to 4294967295

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 167

Expression Evaluator

A.3 Data Type Conversion

Due to the Perl 5 inspired nature of the language, all data types are capable of being converted to
every other type (with a single exception). The rules for data type conversion are very clear and
predicable.

The one exception to the conversion rule is the error type. All data types may be converted to the
error type, but the error type may not be converted to any other type.

A.3.1 Bool

A.3.2 Error

A.3.3 Float

A.3.4 Int

Dest Type Rules

Error Becomes a generic error message.

Float True becomes 1.0. False becomes 0.0.

Int True becomes 1. False becomes 0.

String True becomes “true”. False becomes “false”.

Dest Type Rules

Bool Illegal

Float Illegal

Int Illegal

String Illegal

Dest Type Rules

Bool If the value of the float it 0.0, then false. Otherwise, true.

Error Becomes a generic error message.

Int
Decimal portion is dropped and the resulting integer portion used. If the resulting value
does not fit in a 32 bit integer, then the conversion yields 0.

String
Converts the float to a string representation. The precise format of the string is
determined automatically.

Dest Type Rules

Bool If the value of the int is 0, then false. Otherwise, true.

Error Becomes a generic error message.

Float
Becomes the nearest floating point equivalent value. Generally this means appending a
“.0”.

String Converts the string to its decimal integer representation

168 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Expression Evaluator

A.3.5 String

Strings are a special case. There are 4 sub-types of strings. These include:

 bool-ish strings have the value “true” or “false”.

 float-ish strings have a floating point value as their first non whitespace characters. Trailing
characters that are not a part of the float are ignored.

 int-ish strings have an integer value as their first non-whitespace characters. Trailing characters
that are not a part of the float are ignored.

 other

A.3.5.1 Bool-ish string

A.3.5.2 Float-ish strings

A.3.5.3 Int-ish strings

A.3.5.4 Other strings

Dest Type Rules

Bool If “true” then true, if “false” then false.

Error Becomes an error message with the text of the string.

Float If “true”, then 1.0. If “false” then 0.0

Int If “true”, then 1. If “false” then 0.

Dest Type Rules

Bool Non-float looking text is dropped and the float part converts exactly like a real float.

Error Becomes an error message with the text of the string.

Float Non-float looking text is dropped and the float text is converted to a real float.

Int Non-float looking text is dropped and the float part converts exactly like a real float.

Dest Type Rules

Bool Non-float looking text is dropped and the float part converts exactly like a real int.

Error Becomes an error message with the text of the string.

Float Non-float looking text is dropped and the float text is converted to a real int.

Int Non-float looking text is dropped and the float part converts exactly like a real int.

Dest Type Rules

Bool If the value is the empty string or “0”, then false. All other strings convert to true.

Error Becomes an error message with the text of the string.

Float Becomes 0.0.

Int Becomes 0.

PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T 169

Expression Evaluator

A.4 Operators

The expression evaluator supports the follow operators (in order of precedence from high to low).

 casts

 ! unary+ unary-

 * / %

 + - .

 < > <= >= lt gt le ge

 == != eq ne

 &&

 ||

 ?:

All operators force their arguments to a well defined type and yield a result in a well defined type.

A.4.1 Arithmetic Operators (+, -, *, /, %, unary +, unary -)

Arithmetic operators force their arguments to a number using the following rules in order:

 If either operand is an error, the result of the operation is the left-most error.

 If either operand is a float or is a float-ish string, then both values are forced to proper floats.

 Otherwise both operands are forced to integers.

If both operands are integers and at least one is unsigned then the operation is performed as an
unsigned operation.

Arithmetic operators always yield an error value or a number of the same type as the operands after
the operands have been converted using the rules defined above.

A.4.2 Numeric Compare Operators (==, !=, <, >, <=, >=)

Numeric comparison operators force their arguments to a number using the exact same rules as the
arithmetic operators. Numeric compare operators always yield a bool value.

If both operands are integers and at least one is unsigned then the operation is performed as an
unsigned operation.

A.4.3 String Compare Operators (eq, ne, lt, gt, le, ge)

String compare operators force their arguments to strings, unless either operand is an error. If either
operand is an error, the left-most error is the result of the operation. String compare operators always
yield an error value or a string.

A.4.4 String Concatenation Operator (.)

The string concatenation operator acts like the string compare operators for the purposes of
converting argument values.

Note If the concatenation operator is directly preceded or followed by a digit, then it will be
interpreted as a float (e.g., 1. = float; 1 . = string concatenation).

170 PSoC® Creator™ Component Author Guide, Document # 001-42697 Rev. *T

Expression Evaluator

A.4.5 Ternary Operator (?:)

 If the first operand, the bool value, is an error type then the result is an error type.

 If the bool value is true, the value and type of the result is that of the expression between the ?
and the :.

 If the bool value is false, then the value and type of the result is that of the expression that follows
the :.

A.4.6 Casts

Casts (lowercase: cast) are of the form: cast(type, expr)

Casts evaluate the expression and convert the result of expr to the named type.

A.5 String interpolation

The expression evaluator is capable of interpolating evaluated expressions embedded in strings.
The format is:

`= expr`

The `= marks the beginning of the expression. The = sign is not interpreted as part of the expression.
Since the next ` found ends the expression it is not possible to nest `= blocks inside other `= blocks.
Multiple expressions, provided they aren’t nested, may be embedded in the same string and they will
all be evaluated and interpolated. There is only one evaluation pass over the embedded expression.
If the resutling string is a legal expression it will not be evaluated as an additional step.

The portion of the string from the starting ` to the ending ` is replaced with the result of the
expression between the ` and `.

A.6 User-Defined Data Types (Enumerations)

From the perspective of the expression system user-defined types are simply integers. User-defined
type values can appear in expressions but they are converted to the integer equivalent before being
evaluated in the expression. See Add User-Defined Types on page 36 for information about how to
add user-defined types to your symbol.

	1. Introduction
	1.1 What is a PSoC Creator Component?
	1.2 Component Interaction
	1.3 Component Creation Process Overview
	1.4 Cypress Component Requirements
	1.4.1 File Names
	1.4.2 Name Considerations
	1.4.3 File Name Length Limitations
	1.4.4 Component Versioning

	1.5 Component Parameter Overview
	1.5.1 Formal versus Local Parameters
	1.5.2 Built-In Parameters
	1.5.2.1 Formals:
	1.5.2.2 Locals:

	1.5.3 Expression Functions
	1.5.3.1 Device Information Functions
	1.5.3.2 Component Information Functions
	1.5.3.3 Misc. / Utility Functions
	1.5.3.4 Deprecated Functions

	1.5.4 User-Defined Types

	1.6 References
	1.7 Conventions Used in this Guide
	1.8 Revision History

	2. Creating Projects and Components
	2.1 Create a Library Project
	2.2 Add a Component Item (Symbol)
	2.2.1 Create an Empty Symbol
	2.2.2 Create a Symbol using the Wizard

	3. Defining Symbol Information
	3.1 Define Symbol Parameters
	3.2 Add Parameter Validators
	3.3 Add User-Defined Types
	3.4 Specify Document Properties
	3.4.1 Create External Component
	3.4.2 Define Catalog Placement
	3.4.3 Add Custom Context Menu

	3.5 Define Format Shape Properties
	3.5.1 Common Shape Properties
	3.5.2 Advanced Shape Properties

	4. Adding an Implementation
	4.1 Implement with a Schematic
	4.1.1 Add a Schematic
	4.1.2 Complete the Schematic
	4.1.2.1 Design-Wide Resources (DWR) Settings

	4.2 Create a Schematic Macro
	4.2.1 Add a Schematic Macro Document
	4.2.2 Define the Macro
	4.2.3 Versioning
	4.2.4 Component Update Tool
	4.2.5 Macro File Naming Conventions
	4.2.5.1 Macro and Symbol with Same Name

	4.2.6 Document Properties
	4.2.6.1 Component Catalog Placement
	4.2.6.2 Summary Text
	4.2.6.3 Hidden Property

	4.2.7 Macro Datasheets
	4.2.8 Post-Processing of the Macro
	4.2.9 Example

	4.3 Implement a UDB Component
	4.3.1 Introduction to UDB Hardware
	4.3.1.1 UDB Overview
	4.3.1.2 Datapath Operation

	4.3.2 Implement with UDB Editor
	4.3.3 Implement with Verilog
	4.3.3.1 Verilog File Requirements
	4.3.3.2 Add a Verilog File
	4.3.3.3 Complete the Verilog file

	4.3.4 UDB Elements
	4.3.4.1 Clock/Enable Specification
	4.3.4.2 Datapath(s)
	4.3.4.3 Control Register
	4.3.4.4 Status Register
	4.3.4.5 Count7

	4.3.5 Fixed Blocks
	4.3.6 Design-Wide Resources
	4.3.7 When to use Cypress Provided Primitives instead of Logic
	4.3.8 Warp Features for Component Creation
	4.3.8.1 Generate Statements

	4.4 Implement with Software
	4.5 Exclude a Component

	5. Simulating the Hardware
	5.1 Simulation Environment
	5.2 Model Location
	5.3 Test Bench Development
	5.3.1 Providing the CPU Clock
	5.3.1.1 CPU Clock Example

	5.3.2 Register Access Tasks
	5.3.2.1 FIFO Write
	5.3.2.2 FIFO Read
	5.3.2.3 Register Read
	5.3.2.4 Register Write
	5.3.2.5 Status Read
	5.3.2.6 Control Write

	6. Adding API Files
	6.1 API Overview
	6.1.1 API generation
	6.1.2 File Naming
	6.1.3 API Template Expansion
	6.1.3.1 Parameters
	6.1.3.2 User-Defined Types

	6.1.4 Conditional API Generation
	6.1.5 Verilog Hierarchy Subsitution
	6.1.6 Macro Callbacks
	6.1.6.1 Multiple Callbacks
	6.1.6.2 User Code
	6.1.6.3 Inlining

	6.1.7 Optional Merge Region
	6.1.8 API Cases

	6.2 Add API Files to a Component
	6.3 Complete the .c file
	6.4 Complete the .h file

	7. Finishing the Component
	7.1 Add/Create Datasheet
	7.2 Add Control File
	7.3 Add/Create Debug XML File
	7.3.1 XML Format
	7.3.2 Example XML File
	7.3.3 Example Windows
	7.3.3.1 Select Component Instance Debug Window
	7.3.3.2 Component Instance Debug Window

	7.3.4 Registers Window

	7.4 Add/Create DMA Capability File
	7.4.1 Adding a DMA Capability File to a Component:
	7.4.2 Editing Component Header File:
	7.4.3 Completing the DMA Capability File:
	7.4.3.1 Category Name
	7.4.3.2 Enabled
	7.4.3.3 Bytes In Burst
	7.4.3.4 Bytes in Burst is Strict
	7.4.3.5 Spoke Width
	7.4.3.6 Inc Addr
	7.4.3.7 Each Burst Requires A Request
	7.4.3.8 Location Name

	7.4.4 Example DMA Capability File:

	7.5 Add/Create .cystate XML File
	7.5.1 Adding the .cystate File to a Component
	7.5.2 States
	7.5.3 State Messaging
	7.5.3.1 Notice Type
	7.5.3.2 Default Message

	7.5.4 Best Practices
	7.5.5 XML Format
	7.5.6 Example <project>.cystate File

	7.6 Add Static Library
	7.6.1 Best Practices

	7.7 Add Dependency
	7.7.1 Add a User Dependency
	7.7.2 Add a Default Dependency

	7.8 Build the project

	8. Customizing Components (Advanced)
	8.1 Customizers from Source
	8.1.1 Protecting Customizer Source
	8.1.2 Development flow
	8.1.3 Add Source File(s)
	8.1.4 Create Sub-Directories in “Custom”
	8.1.5 Add Resource Files
	8.1.6 Name the Class / Customizer
	8.1.7 Specify Assembly References
	8.1.8 Customizer cache

	8.2 Precompiled Component Customizers
	8.3 Usage Guidelines
	8.3.1 Use Distinct Namespaces
	8.3.2 Use Distinct External Dependencies
	8.3.3 Use Common Component To Share Code

	8.4 Customization Examples
	8.5 Interfaces
	8.5.1 Clock Query in Customizers
	8.5.1.1 ICyTerminalQuery_v1
	8.5.1.2 ICyClockDataProvider_v1

	8.5.2 Clock API support

	9. Adding Tuning Support (Advanced)
	9.1 Tuning Framework
	9.2 Architecture
	9.3 Tuning APIs
	9.3.1 LaunchTuner API
	9.3.2 Communications API (ICyTunerCommAPI_v1)

	9.4 Passing Parameters
	9.5 Component Tuner DLL
	9.6 Communication Setup
	9.7 Launching the Tuner
	9.8 Firmware Traffic Cop
	9.9 Component Modifications
	9.9.1 Communication Data

	9.10 A simple tuner

	10. Adding Bootloader Support (Advanced)
	10.1 Firmware
	10.1.1 Guarding
	10.1.2 Functions
	10.1.2.1 void CyBtldrCommStart(void)
	10.1.2.2 void CyBtldrCommStop(void)
	10.1.2.3 void CyBtldrCommReset(void)
	10.1.2.4 cystatus CyBtldrCommWrite(uint8 *data, uint16 size, uint16 *count, uint8 timeOut)
	10.1.2.5 cystatus CyBtldrCommRead(uint8 *data, uint16 size, uint16 *count, uint8 timeOut)

	10.1.3 Customizer Bootloader Interface

	11. Best Practices
	11.1 Clocking
	11.1.1 UDB Architectural Clocking Considerations
	11.1.2 Component Clocking Considerations
	11.1.3 UDB to Chip Resource Clocking Considerations
	11.1.4 UDB to Input/Output Clocking Considerations
	11.1.5 Metastability in Flip-Flops
	11.1.6 Clock Domain Boundary Crossing
	11.1.7 Long Combinatorial Path Considerations
	11.1.8 Synchronous Versus Asynchronous Clocks
	11.1.9 Utilizing cy_psoc3_udb_clock_enable Primitive
	11.1.10 Utilizing cy_psoc3_sync Component
	11.1.11 Routed, Global and External Clocks
	11.1.12 Negative Clock Edge Hidden Dangers
	11.1.13 General Clocking Rules

	11.2 Interrupts
	11.2.1 Status Register
	11.2.2 Internal Interrupt Generation and Mask Register
	11.2.3 Retention Across Sleep Intervals
	11.2.4 FIFO Status
	11.2.5 Buffer Overflow
	11.2.6 Buffer Underflow

	11.3 DMA
	11.3.1 Registers for Data Transfer
	11.3.2 Registers for Status
	11.3.3 Spoke width
	11.3.4 FIFO Dynamic Control Description
	11.3.5 Datapath Condition/Data Generation
	11.3.6 UDB Local Bus Configuration Interface
	11.3.7 UDB Pair Addressing
	11.3.7.1 Working Register Address Space
	11.3.7.2 8-Bit Working Register Access
	11.3.7.3 16-bit Working Register Address Space
	11.3.7.4 16-bit Working Register Address Limitation

	11.3.8 DMA Bus Utilization
	11.3.9 DMA Channel Burst Time
	11.3.10 Component DMA capabilities

	11.4 Low Power Support
	11.4.1 Functional requirements
	11.4.2 Design Considerations
	11.4.3 Firmware / Application Programming Interface Requirements
	11.4.3.1 Data Structure Template
	11.4.3.2 Save/Restore Methods
	11.4.3.3 Additions to Enable and Stop Functions

	11.5 Component Encapsulation
	11.5.1 Hierarchical Design
	11.5.2 Parameterization
	11.5.3 Component Design Considerations
	11.5.3.1 Resources
	11.5.3.2 Power Management
	11.5.3.3 Component Development
	11.5.3.4 Testing Components

	11.6 Verilog
	11.6.1 Warp: PSoC Creator Synthesis Tool
	11.6.2 Synthesizable Coding Guidelines
	11.6.2.1 Blocking versus Non-Blocking Assignments
	11.6.2.2 Case Statements
	11.6.2.3 Parameter Handling
	11.6.2.4 Latches
	11.6.2.5 Reset and Set

	11.6.3 Optimization
	11.6.3.1 Designing for Performance
	11.6.3.2 Designing for Size

	11.6.4 Resource choice
	11.6.4.1 Datapath
	11.6.4.2 PLD Logic

	A. Expression Evaluator
	A.1 Evaluation Contexts
	A.2 Data Types
	A.2.1 Bool
	A.2.2 Error
	A.2.3 Float
	A.2.4 Integers
	A.2.5 String

	A.3 Data Type Conversion
	A.3.1 Bool
	A.3.2 Error
	A.3.3 Float
	A.3.4 Int
	A.3.5 String
	A.3.5.1 Bool-ish string
	A.3.5.2 Float-ish strings
	A.3.5.3 Int-ish strings
	A.3.5.4 Other strings

	A.4 Operators
	A.4.1 Arithmetic Operators (+, -, *, /, %, unary +, unary -)
	A.4.2 Numeric Compare Operators (==, !=, <, >, <=, >=)
	A.4.3 String Compare Operators (eq, ne, lt, gt, le, ge)
	A.4.4 String Concatenation Operator (.)
	A.4.5 Ternary Operator (?:)
	A.4.6 Casts

	A.5 String interpolation
	A.6 User-Defined Data Types (Enumerations)

