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This document encompasses the PSoC®5LP family of devices. In conjunction with the device datasheet and PSoC 5LP Reg-
isters TRM, it contains complete and detailed information about how to design with the IP blocks that construct a PSoC 5LP
device. This document describes the analog and digital architecture, and helps to better understand the features of the
device.

This section consists of the following chapters:

m Introduction chapter on page 23

m Getting Started chapter on page 29

m Document Construction chapter on page 31

See the PSoC® 5LP Registers TRM (Technical Reference Manual) for complete register sets.
Document Revision History

Table 1-1. PSoC® 5LP Architecture TRM (Technical Reference Manual) Revision History

L Origin of L
Revision Issue Date Change Description of Change
bl 09/25/2012 VVSK Initial version of the PSoC 5LP Architecture TRM

Updated use of bypass capacitor for reference voltage (section 38.2.5 Reference Selection)
Added information on the effect of changing pin modes (section 19.3.2 I/O Modes)
Updated Tables 20-3 to 20-6

Added sections 18.1.2 Low-Voltage Reset and High-Voltage Reset and 18.1.6.1 Preservation of Reset Status; updates
to 15.3.3. Voltage Monitoring

Added information on accessing DAP with third-party tools (section 8.2.5 DPS[1:0]

*A 11/21.2012 VVSK

Added 18.1.2 Low-Voltage Reset and High- Voltage Reset and 18.1.6.1 Preservation of Reset Status; updates to
15.3.3. Voltage Monitoring. Added information on effect of changing pin modes in section 19.3.2 /0O Modes. Added
information on accessing DAP with third-party tools in section 8.2.5. Added a note to sections 10.3 and 11.3. Updated
*B 06/18/2013 ANTO section 25.3.4.1 (Period register setting to EN = 1).

Updated Figure 14-1 and Tables 20-3 to 20-6. Modified the Datapath Top Level Diagram

Updates to PHUB and DMAC chapters

Updated Drive Modes diagram in the I/O System chapter on page 151.

Corrected section 14.3.2.2 32.768 kHz Crystal Oscillator to mention the active mode operating current.
*C 09/26/2013 ANTO Removed the comparator as a wakeup source from hibernate in section 16.5.2 Exiting Hibernate Mode.

Corrected FTW register name in section 16.6.2 Fast Timewheel (FTW).
Updated Successive Approximation Register ADC chapter on page 397

Clarified device behavior in multiple sections

*D 07/02/2015 GJV Updated figures 6-2, 6-3, 18-1, 23-13, 25-4, and 28-1.

Updated tables 4-2, 7-3, 37-1, and 41-2; added tables 18-2 and 21-6.
Updated logo and copyright disclaimer.

Added CAN initialization note to section 23.4.2 step #1.

Removed AltAct to Sleep transition from figure 16-1.

*E 10/14/2016 GJv ) -
Removed switches between OpAmp outputs and pins in Figure 29-11.
Corrected Trace Port bitfields in Figure 40-4.
Fixed broken link to PSoC 5LP Programming Specification.

*F 05/31/2017 SHEA Updated logo and copyright information.
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With a unique array of configurable digital and analog blocks, the Programmable System-on-Chip (PSoC®) is a true system-
level solution, offering a modern method of signal acquisition, processing, and control with exceptional accuracy, high band-
width, and superior flexibility. Its analog capability spans the range from thermocouples (DC voltages) to ultrasonic signals.

PSoC 5LP (CYBC58LP, CYBC56LP, CYBC54LP, CY8C52LP) families are fully scalable 32-bit PSoC platform devices that
have these characteristics:

m High-performance, configurable digital system that supports a wide range of communication interfaces, such as USB, 12C,
and CAN

m High-precision, high-performance analog system with up to 20-bit ADC, DACs, comparators, opamps, and programmable
blocks to create PGAs, TIAs, mixers, and so on

Easily configurable logic array
Flexible routing to all pins
High-performance, 32-bit ARM Cortex-M3 core

PSoC Creator, an integrated development environment software

This document describes PSoC 5LP devices in detail. Using this information, designers can easily create system-level
designs, using a rich library of prebuilt components, or custom verilog, and a schematic entry tool that uses the standard
design blocks. PSoC 5LP devices provide unparalleled opportunities for analog and digital bill of materials (BOM) integration,
while easily accommodating last-minute design changes.

For a discussion of the registers of the PSoC 5LP device, see Cypress document 001-82120, the PSoC 5LP Registers TRM.
It lists all the registers in mapping tables in address order.

1.1 Top Level Architecture

Figure 1-1 on page 24 shows the major components of PSoC 5LP devices. The PSoC 5LP device uses the 32-bit Cortex M3
core.
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Figure 1-1. Top Level Architecture for PSoC 5LP Devices

Analog Interconnect

Digital Interconnect #
2 J—
3 SYSTEM WIDE DIGITAL SYSTEM 2
Q ! RESOURCES Universal Digital Block Array (N x UDB) CAN 12c
A(gpii rf:/\;)z O CT Quadrature Decoder z 2.0 Master/Slave
G ]
'L Xtal FS USB UsB D+
HF01 o ] |8 N 20 PHY D-
: 12C Slave BBush Timer,
S I l I Counter,
2 uoB uos
IMO o PWM

GPIOs
H

n
32.768 kHz ]
(Optional) uos ubs uos o8 4>§|74:| ,
|:|;- 3 TART x
RTC

[e=] )
. Timer #
Hi T + SYSTEM BUS T
@
MEMORY SYSTEM CPU SYSTEM Program, g
\g/r?c;r Interrupt DEE o
Cortex-M3 CPU -
Wake EEPROM SRAM ortex ™™ controller Program -| ~
8 gt . [ Debug, _J T
1= Trace
[ o *
N3 EMIF FLASH PHUS Boundary
Clocking System # "
— o
— ANALOG SYSTEM A o
. Digital [0)
%] Power Management LCD Direct Filter
-l 8 System Drive Block < +
2 ADCs X A Ja>
POR and N x SAR Opamp 3 per 4
LVD ADC 1 (N Opamp
N x SC/CT Blocks -
Sleep (TIA, PGA, Mixer, etc.)
Power AU:SE'V e
=B Temperature| ﬁ * A
SH i} 1.8V LDO Sensor N N x é\‘Mxp o J—>
h DEL SIG - o
3 | swp CapSense ADC |H NN
A
051055V
(Optional) Yy A

24 PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



o CYPRESS

~ammp> EMBEDDED IN TOMORROW

1.2

PSoC 5LP devices have these major components. See
Figure 1-1 on page 24.

Features

m Cortex-M3 central processing unit (CPU) with a nested
vectored interrupt controller and a high-performance
DMA controller

m Several types of memory elements including SRAM,
flash, and EEPROM

m System integration features, such as clocking, a feature-
rich power system, and versatile programmable inputs
and outputs

m Digital system that includes configurable universal digital
blocks (UDBs) and specific function peripherals, such as
CAN and USB

m  Analog subsystem that includes configurable switched
capacitor (SC) and continuous time (CT) blocks, up to
20-bit Delta Sigma converters, 8-bit DACs that can be
configured for 12-bit operation, more than one SAR
ADC, comparators, PGAs, and more

m  Programming and debug system through JTAG, serial
wire debug (SWD), and single wire viewer (SWV)

1.3 CPU System

13.1

The PSoC 5LP CPU subsystem is built around a 32-bit three
stage pipelined ARM Cortex-M3 processor running up to 80
MHz. The PSoC 5LP instruction set is the same as the
Thumb-2 instruction set available on standard Cortex- M3
devices.

Processor

1.3.2

The CPU subsystem includes a programmable Nested Vec-
tored Interrupt Controller (NVIC), DMA (Direct Memory
Access) controller, flash cache ECC, and RAM. The NVIC of
PSoC 5LP devices provide low latency by allowing the CPU
to vector directly to the first address of the interrupt service
routine, bypassing the jump instruction required by other
architectures.

Interrupt Controller

The PSoC 5LP interrupt controller also offers a few
advanced interrupt management capabilities, such as inter-
rupt tail chaining to improve stack management with multiple
pending interrupts providing lower latency.

1.3.3 DMA Controller

The DMA controller allows peripherals to exchange data
without CPU involvement. This allows the CPU to run

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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slower, save power, or use its cycles to improve the perfor-
mance of firmware algorithms.

1.34 Cache Controller

In PSoC 5LP devices, the flash cache also reduces system
power consumption by reducing the frequency with which
flash is accessed. The processor speed itself is configurable
allowing for active power consumption tuned for specific
applications.

1.4

The PSoC nonvolatile subsystem consists of flash, byte-
writable EEPROM, and nonvolatile configuration options.

Memory

The CPU can reprogram individual blocks of flash, enabling
boot loaders. An Error Correcting Code (ECC) can enable
high-reliability applications.

A powerful and flexible protection model allows you to selec-
tively lock blocks of memory for read and write protection,
securing sensitive information. The byte-writable EEPROM
is available on-chip for the storage of application data. Addi-
tionally, selected configuration options, such as boot speed
and pin drive mode, are stored in nonvolatile memory, allow-
ing settings to become active immediately after power-on-
reset (POR).
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1.5 System Wide Resources

The individual elements of system wide resources are dis-
cussed in these sections.

151

PSoC 5LP devices have three 1/O types:

m  General Purpose Input/Output (GPIO) — Every GPIO
has analog /O, digital /0, LCD drive, CapSense®, flexi-
ble interrupt, and slew rate control capability. All I/Os
have a large number of drive modes that are set at POR.
PSoC 5LP devices also provide up to four individual I/O
voltage domains through the VDDIO pins.

m Special Input/Output (SIO) — The SIOs on PSoC 5LP
devices allow setting VOH independently of VDDIO
when used as outputs. When SIOs are in input mode,
they are high impedance, even when the device is not
powered or when the pin voltage goes above the supply
voltage. This makes the SIO ideal for use on an 12C bus
where the PSoC 5LP devices are not powered, even
though other devices on the bus are powered. The SIO
pins also have high-current sink capability for applica-
tions such as LED drive.

m  USB Input/Output (USBIO) — For devices with Full-
Speed USB, the USB physical interface is also provided
(USBIO). When not using USB, these pins can be used
for limited digital functionality and device programming.

I/O Interfaces

15.2

PSoC devices incorporate flexible internal clock generators,
designed for high stability and factory-trimmed for absolute
accuracy. The internal main oscillator (IMO) is the master
clock base for the system with 1% absolute accuracy at
3 MHz. The IMO can be configured to run from 3 MHz up to
48 MHz. Multiple clock derivatives are generated from the
main clock frequency to meet application needs.

Internal Clock Generators

PSoC 5LP devices provide a PLL to generate system clock
frequencies up to the maximum operating frequency of the
device (80 MHz). The PLL can be driven from the IMO, an
external crystal, or an external reference clock. The devices
also contain a separate, very low power internal low-speed
oscillator (ILO) for the sleep and watchdog timers. The ILO
provides two primary outputs, 1 kHz and 100 kHz. A 32.768-
kHz external watch crystal is also supported for use in real-
time clock (RTC) applications. The clocks, together with pro-
grammable clock dividers, provide the flexibility to integrate
most timing requirements.
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153

PSoC 5LP devices support extensive supply operating
ranges from 1.7 V to 5.5 V, allowing operation from regu-
lated supplies such as 1.8 + 5%, 2.5 V + 10%, 3.3 V + 10%,
5.0 V + 10%, or directly from a wide range of battery types.

Power Supply

1531

The PSoC platform provides an integrated high-efficiency
synchronous boost converter that is used to power the
device from supply voltages as low as 0.5 V. This converter
enables the device to power directly from a single battery or
solar cell. You can employ the boost converter to generate
other voltages required by the device, such as a 3.3-V sup-
ply for LCD glass drive. The boost output is available on the
VBOOST pin, allowing other devices in the application to
draw power from the PSoC device.

Boost Converter

1532

The PSoC platform supports five low-power sleep modes,
from the lowest current RAM retention mode (hibernation) to
the full function active mode. A 1.0-uA RTC mode runs the
optional 32.768-kHz watch crystal continuously to drive the
RTC timer that is used to maintain RTC. Power to all major
functional blocks, including the programmable digital and
analog peripherals, is controlled independently by firmware.

Sleep Modes

This function allows low-power background processing
when some peripherals are not in use.

1.6 Digital System

The digital subsystems of PSoC 5LP devices provide these
devices their first half of unique configurability.

The subsystem connects a digital signal from any peripheral
to any pin through the Digital System Interconnect (DSI). It
also provides functional flexibility through an array of small,
fast, low-power universal digital blocks (UDBS).

Each UDB contains Programmable Array Logic (PAL) and
Programmable Logic Device (PLD) functionality, together
with a small state machine engine to support a wide variety
of peripherals.

In addition to the flexibility of the UDB array, PSoC devices
provide configurable digital blocks targeted at specific func-
tions.

These blocks include 16-bit timer/counter/PWM blocks, Ee
slave/master/multi-master, Full Speed USB, and CAN 2.0b.
See the device datasheet for a list of available specific func-
tion digital blocks.
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1.7 Analog System

The PSoC analog subsystem provides the device the sec-
ond half of its unique configurability. All analog performance
is based on a highly accurate absolute voltage reference.
The configurable analog subsystem includes:

Analog muxes

Comparators

Voltage references

Opamps

Mixers

Transimpedance amplifiers (TIA)

Analog-to-digital converters (ADC)

Digital-to-analog converters (DAC)

Digital filter block (DFB)

All GPIO pins can route analog signals into and out of the
device, using the internal analog bus. This feature allows
the device to interface up to 62 discrete analog signals.

1.7.1 Delta Sigma ADC

The heart of the analog subsystem is a fast, accurate, con-
figurable Delta Sigma ADC. With less than 100 pV offset, a
gain error of +0.1%, integral nonlinearity (INL) less than 1
LSB, differential nonlinearity (DNL) less than 0.5 LSB, and
signal-to-noise ratio (SNR) better than 90 dB (Delta Sigma)
in 16-bit mode, this converter addresses a wide variety of
precision analog applications, including some of the most
demanding sensors.

1.7.2 Successive Approximation

Register ADC

Another type of ADC seen on PSoC 5LP devices is the Suc-
cessive Approximation Register (SAR) ADC. Featuring 12-
bit conversions at up to 1 Msps, it offers low nonlinearity, low
offset errors, and an SNR better than 70 dB; it is well suited
for a variety of higher-speed analog applications. Some
PSoC devices offer both types of ADC and can have multi-
ple instances of each. See the device datasheet for specific
details.

1.7.3 Digital Filter Block

The ADC output can optionally feed the programmable digi-
tal filter block (DFB) via DMA without CPU intervention. The
DFB can be configured to perform IIR and FIR digital filters
and a variety of user defined custom functions. The DFB
can implement filters with up to 64 taps.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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1.7.4

Four high-speed voltage or current DACs support 8-bit out-
put signals at waveform frequencies up to 8 MHz and can
be routed out of any GPIO pin. These DACs can be com-
bined together to create a higher resolution 12-bit DAC.

Digital-to-Analog Converters

Higher resolution voltage DAC outputs are created using the
UDB array to create a pulse width modulated (PWM) DAC of
up to 10 bits, at up to 48 kHz. The digital DACs in each UDB
support PWM, PRS, or Delta Sigma algorithms with pro-
grammable widths.

1.7.5 Additional Analog Subsystem

Components

In addition to the ADCs, DACs, and the DFB, the analog
subsystem provides components such as multiple compara-
tors, uncommitted opamps, and configurable switched
capacitor/continuous time (SC/CT) blocks supporting tran-
simpedance amplifiers, programmable gain amplifiers, and
mixers.

1.8 Program and Debug

JTAG (4-wire) or serial wire debugger (SWD) (2-wire) inter-
faces are used for programming and debug. The 1-wire sin-
gle wire viewer (SWV) can also be used for “printf” style
debugging. By combining SWD and SWV, you can imple-
ment a full debugging interface with just three pins.

These standard interfaces enable debugging or program-
ming the PSoC device with a variety of hardware solutions
from Cypress or third party vendors.

PSoC 5LP devices support on-chip break points, and an
instruction and data trace memory for debug. The
PSoC 5LP device offers many more advanced debugging
features, such as Flash patch breakpoint capability to
update instructions without reprogramming, fast “printf” style
debugging using the Trace Port Interface Unit (TPIU) mod-
ule, clock cycle counting capability, and various other fea-
tures with Data Watchpoint and Trace (DWT) modules.
JTAG also supports standard JTAG scan chains for board
level test and chaining multiple JTAG devices.
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The quickest path to understanding any PSoC® device is to read the device datasheet and use PSoC Designer™ or
PSoC Creator™ integrated development environments (IDE) software. This technical reference manual helps to understand
the details of the PSoC 5LP integrated circuit and its implementation.

For the most up-to-date ordering, packaging, or electrical specification information, refer to the individual PSoC device’s data-
sheet or go to http://www.cypress.com/psoc.

2.1 Support

Free support for PSoC products is available online at http://www.cypress.com. Resources include Training Seminars, Discus-
sion Forums, Application Notes, PSoC Consultants, TightLink Technical Support Email/Knowledge Base, and Application
Support Technicians.

Applications assistance can be reached at http://www.cypress.com/support/ or by phone at: 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on CD-ROM, or download them directly from http://www.cypress.com under the Software option. Also
provided are critical updates to system documentation under the Documentation tab.

2.3 Development Kits

Development kits are available from Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development
kits, C compilers, and the accessories you need to successfully develop PSoC projects. Go to the Cypress Online Store web
site at http://www.cypress.com/shop/. Under Product Categories click PSoC (Programmable System-on-Chip) to view a cur-
rent list of available items.
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The following sections include these topics:

Section B: CPU System on page 35

Section C: Memory on page 83

Section D: System Wide Resources on page 107
Section E: Digital System on page 173

Section F: Analog System on page 303

Section G: Program and Debug on page 401

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

m Sections — Presents the top-level architecture, how to get started and conventions and overview information about any
particular area that help inform the reader about the construction and organization of the product.

m Chapter — Presents the chapters specific to some individual aspect of the section topic. These are the detailed implemen-
tation and use information for some aspect of the integrated circuit.

m Glossary — Defines the specialized terminology used in this technical reference manual. Glossary terms are presented in
bold, italic font throughout.

m PSoC® 5LP Registers TRM (Technical Reference Manual) — Supply all device register details summarized in the techni-
cal reference manual. These are additional documents.

3.2 Documentation Conventions

There are only four distinguishing font types used in this document, besides those found in the headings.
The first is the use of italics when referencing a document title or file name.

The second is the use of bold italics when referencing a term described in the Glossary of this document.
m The third is the use of Times New Roman font, distinguishing equation examples.
m The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC® 5LP Registers TRM (Technical Reference Manual).

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0Ox’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.
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3.2.3 Units of Measure Table 3-2. Acronyms (continued)
This table lists the units of measure used in this document. Symbol Ll e zasLe
BINC bit implemented no connection
Table 3-1. Units of Measure BOM bill of materials
Symbol Unit of Measure BR bit rate
°C degrees Celsius BRA bus request acknowledge
dB decibels BRQ bus request
= femtofarads CAN controller area network
Hz Hertz CBUS comparator bus
k kilo, 1000 cl carty in
K kilo, 2710 CMP compare
KB 1024 bytes, or approximately one thousand bytes CMRR common mode rejection ratio
Kbit 1024 bits co carry out
kHz kilohertz (32.000) CPU central processing unit
e kilohms CRC cyclic redundancy check
MHz megahertz CT continuous time
MQ megaohms DAC digital-to-analog converter
UA microamperes DAP debug access port on ARM Cortex™-M3 of PSoC 5LP
M= microfarads DC direct current
Hs microseconds DFB digital filter block
Y microvolts DI digital or data input
pvrms microvolts root-mean-square DMA direct memory access
mA milliamperes DMAC direct memory access controller
ms milliseconds DNL differential nonlinearity
mv millivolts DO digital or data output
nA nanoamperes DSl digital signal interface
ns nanoseconds ECO external crystal oscillator
nv nanovolts EEPROM electrically erasable programmable read only memory
Q ohms EMIF external memory interface
pF picofarads FB feedback
pp peak-to-peak FSR full scale range
ppm parts per million GIE global interrupt enable
SPS samples per second GPIO general purpose /O
G sigma: one standard deviation 1°C inter-integrated circuit
volts ICE In-circuit emulator
IDE integrated development environment
3.24 Acronyms ILO internal low-speed oscillator
. . . . IMO internal main oscillator
This table lists the acronyms that are used in this document : —
INL integral nonlinearity
Table 3-2. Acronyms 110 input/output
. IOR 1/0 read
Symbol Unit of Measure
Iow 1/0 write
ABUS analog output bus
AC alternating current IRES initial power on reset
ADC analog-to-digital converter IRA interrupt request acknowledge
IR int t t
API application programming interface Q Interrupt reques
APOR analog power-on reset ISR interrupt service routine
BC broadcast clock ISSP In-system serial programming
- o ] IVR interrupt vector read
BIFC bit implemented functioning connection
LFSR linear feedback shift register
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Table 3-2. Acronyms (continued)

Document Construction

Table 3-2. Acronyms (continued)

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

Symbol Unit of Measure Symbol Unit of Measure
LRb last received bit SPIS serial peripheral interconnect slave
LRB last received byte SRAM static random-access memory
LSb least significant bit SROM supervisory read only memory
LSB least significant byte SSADC single slope ADC
LUT lookup table SSsC supervisory system call
MISO master-in-slave-out SWD single wire debug
MOSI master-out-slave-in SWV single wire viewer
MSb most significant bit TC terminal count
MSB most significant byte TD transaction descriptors
NVIC gzs;gdsvlj:ctored interrupt controller on Cortex-M3 of TIA transimpedance amplifier

uDB universal digital block
PC program counter - UsB universal serial bus
PCH program counter high USBIO USB 10
PCL program counter low VCO voltage controlled oscillator
PD power down WDT watchdog timer
PGA programmable gain amplifier WDR watchdog reset
PHUB peripheral hub XRES_N external reset, active low
PICU port interrupt control unit
PM power management
PMA PSoC memory arbiter
POR power-on reset
PPOR precision power-on reset
PRS pseudo random sequence
PSoC® Programmable System-on-Chip
PSRAM pseudo SRAM
PSRR power supply rejection ratio
PSSDC power system sleep duty cycle
PVT process voltage temperature
PWM pulse-width modulator
RAM random-access memory
RAS row address strobe
RETI return from interrupt
RO relaxation oscillator
ROM read only memory
RW read/write
SAR successive approximation register
SC switched capacitor
SIE serial interface engine
SIO special I/O
SEO single-ended zero
SNR signal-to-noise ratio
SOF start of frame
SOl start of instruction
SP stack pointer
SPD sequential phase detector
SPI serial peripheral interconnect
SPIM serial peripheral interconnect master
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Section B: CPU System
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The PSoC 5LP CPU subsystem is built around a 32-bit three stage pipelined ARM Cortex-M3 processor running up to
80 MHz.

This section includes the following chapters:

m  Cortex™-M3 Microcontroller chapter on page 37
m PHUB and DMAC chapter on page 55

m Interrupt Controller chapter on page 73

Top Level Architecture

CPU System Block Diagram

G System Bus f

CPU SYSTEM
Cortex M3 CPU | Interrupt
O Controller
SvsTEM PROGRAM
[ —
ST and DEBUG
PHUB
DMA

PSoC 5LP CPU System Block Diagram

G System BUS f

CPU SYSTEM
8051 or > Interrupt
Cortex M3 CPU |~ | Controller
PROGRAM
MEMORY A [
pram— and DEBUG
SYSTEM v
Cache PHUB
Controller DMA
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4. Cortex™-M3 Microcontroller

The PSoC 5LP ARM Cortex-M3 core is a high performance, low-power 32-bit Central Processing Unit (CPU). It has an effi-
cient Harvard 3-stage pipeline core, a fixed 4 GB memory map, and supports the 16/32-bit Thumb-2 instruction set. The Cor-
tex-M3 also features hardware divide instructions and low-latency ISR (Interrupt Service Routine) entry and exit.

The Cortex-M3 processor includes a number of other components that are tightly linked to the CPU core. These include a
Nested Vectored Interrupt Controller (NVIC), a SYSTICK timer, and numerous debug and trace blocks.

This section gives an overview of the Cortex-M3 processor. For further details please see the ARM Cortex-M3 Technical Ref-
erence Manual available at http://www.arm.com. Figure 5-1 shows a diagram of the Cortex-M3 and its interface to different
blocks on the device.

4.1 Features

Three stage pipelining operating at 1.25 DMIPS/MHz. This helps to increase execution speed or reduce power.
Supports Thumb-2 instruction set:
a  The Thumb-2 instruction set supports complex operations with both 16- and 32-bit instructions
0 Atomic bit level read and write instructions
o Support for unaligned memory access
Improved code density, ensuring efficient use of memory.
Easy to use, ease of programmability and debugging:
a0 Ensures easier migration from 8- and 16-bit processors
m  Nested Vectored Interrupt Controller (NVIC) unit to support interrupts and exceptions:
o Helps to achieve rapid interrupt response
m Extensive debug support including:
o Serial Wire Debug Port (SWD-DP), Serial Wire JTAG Debug Port (SWJ-DP)
Break points

]

Flash patch

]

Instruction tracing

u]

Code tracing
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Figure 4-1. PSoC 5LP Cortex-M3 Block Diagram

Interrupt Inputs Nested W. hDat'a d
ptinp Vectored Cortex M3 CPU Core atchpointand | o o e
Interrupt Trace (DWT) Trace Module
Controller (ETM)
(NVIC)
Instrumentation
Trace Module
I-Bus  D-Bus S-Bus (IT™)
I _ - 0 — — — — Trace Pins:
JTAG/SWD | Debug Block Trace Port | 5 for TRACEPORT or
<«——» (Serialand Flash Patch | Interface Unit |1 for Swv mode
JTAG) and Breakpoint (TPIV) «—»
(FPB)
C-Bus Cortex M3 Wrapper
A
AHB AHB
32 KB Bus
SRAM Matrix Bus 256 KB
Matrix Cache | ECC
Flash
AHB
\J \
32 KB Bus
SRAM Matrix . ]
AHB Bridge & Bus Matrix DMA
PHU
AHBSpokes_I_ i_I _I_' * 'I I_l I_
r-—-——————————— = — = —_————n
| I
| GPIO & Prog. Prog. Special | |
| EMIF Digital Analog Functions :
I
I i !
- ———— — . Perpherals_ _ _ _ _ _ _ __ )

The bus interfaces in the Cortex-M3 are based on AHB-Lite
(Advanced High Performance Bus-Lite) and the APB
(Advanced Peripheral Bus) protocols.

The bus interfaces available in the Cortex-M3 are:

m [-Code Bus for instruction fetches

m D-Code Bus for data fetches

m  System Bus for instruction and data fetches in memory
regions 0x20000000 to OXDFFFFFFF and OxE0100000
to OXFFFFFFFF

m External Private Peripheral Bus used to debug compo-
nents

m  Debug Access Port used to connect the debug interface
blocks such as SWJ-DP
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4.2 How it Works

The Cortex-M3 is a 32-bit processor with a 32-bit data path,
32-bit register, and a 32-bit memory interface. It supports
both 16-bit and 32-bit instructions in the Thumb-2 instruction
set. Because the Cortex-M3 does not support the ARM
instruction set, it is not backward compatible with the ARM7
processor.

The processor supports two operating modes: a single cycle
32-bit multiplication instruction, and hardware divide instruc-
tions.

42.1 Registers

The Cortex-M3 has 16 32-bit registers (Figure 4-2). They
are:

m RO to R12 - general purpose registers
o RO to R7 — can be accessed by all instructions

0 R8to R12 — can be accessed by all 32-bit and some
16-bit instructions
m R13 - Stack Pointer (SP). There are two stack pointers,
with only one available at a time. The SP is always 32-bit
word aligned; bits [1:0] are always ignored and consid-
ered to be ‘0.

m R14 — Link register. Stores the return program counter
during function calls.

m  R15 - Program counter. This register can be written to
control program flow.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

Figure 4-2. Cortex-M3 Registers

R13 (MSP)

R13 (PSP)

R14

R15
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General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

Main Stack Pointer (MSP),
Process Stack Pointer (PSP)

Link Register

Program Counter
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Low Registers

High Registers
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4.2.1.1 Special Registers

The special registers can be accessed only using special instructions and cannot be used for normal data processing. Cortex-
M3 supports three sets of special registers:

Figure 4-3. Cortex-M3 Special Registers

xPSR Program Status registers
PRIMASK
) Special registers
FAULTMASK Interrupt Mask registers
BASEPRI
CONTROL Control register

Program Status Registers

These registers consist of:

m  Application Program Status Register (APSR)

m Interrupt Program Status Register (IPSR)

m Execution Program Status Register (EPSR)

These registers provide ALU flags (zero, carry), execution status, and current executing interrupt number. The three PSRs

can be accessed separately or collectively, using the special instructions MSR and MRS. They can be collectively addressed
as xPSR.

Figure 4-4. Cortex-M3 Program Status Registers

XPSR ‘ 31 ‘ 30 ‘ 29 ‘ 28 ‘ 27 ‘ 26:25 ‘ 24 ‘ 23:20 ‘ 19:16 ‘ 15:10 ‘ 9 ‘ 8:0 ‘
‘ N ‘ z ‘ C ‘ \% ‘ Q ‘ ICINT ‘ T ‘ - ‘ -- ‘ ICINT ‘ - ‘ Exception Number ‘
Where: Interrupt Mask Registers
m N — Negative Flag m PRIMASK — Used to disable all interrupts except the
m Z-ZeroFlag Nonmaskable Interrupt (NMI) and HardFault
m C - Carry/Borrow Flag B FAULTMASK - Used to disable all interrupts except NMI
m V- Overflow Flag m BASEPRI - Used to disable interrupts of specified or
. . lower priority levels.
m  Q — Sticky Saturation Flag P y
m [CI/IT - Interrupt-Continual Instruction (ICI) bits / IF- These registers are used by the NVIC to mask an interrupt
THEN instruction status bit or exception.

m T - Thumb-2 Instruction. Always set to 1. Clearing this
results in an exception

m  Exception Number — Indicates which exception the pro-
cessor is currently handling
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Control Register When the code is in user level, it cannot access the debug

. . . . resources and certain important registers.
This register controls the stack pointer selection and the P 9

privilege level of the processor. It has only two bits: In addition to the privilege levels, the processor supports two
types of operating modes:

CONTROL[O]
o ) m Thread Mode — Thread mode is used by all normal
0’ Privileged in Thread Mode applications. During the thread mode the Process Stack
‘1’ User state in Thread mode Pointer (PSP) is used. The thread mode can exist in
both privileged level and user level. Switching from privi-
CONTROLI[1] leged level to user level can be done by just writing to

the control register but the reverse cannot be done.
When an exception occurs, the system is automatically

‘0’ Default stack is used

‘1" Alternate stack is used taken to privileged level and at the exit of the exception it
comes back to the user level. Restoring to the privileged

4.2.2 Operating Modes level can be done only by going through an exception
handler that programs the control register for the privi-

The Cortex-M3 supports two privilege levels:
o o leged mode.
m Privileged — Code has no limit to resources )
m Handle Mode — Handle mode is used by OS kernel and

exception handlers. During this mode, the main stack

Privilege level can be controlled using the control register. pointer (MSP) is used. The handle mode can exist only
in the privileged level.

m User — Code has some limits to the resources

Figure 4-5. Operating Modes

Privilege Level

User Privileged

n/a Handle Mode

Thread Mode

Handle Mode: running an interrupt service routine
Thread Mode: running background code
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Cortex™-M3 Microcontroller

Figure 4-6. Operating Mode Transitions

Exception

Entry / Exit
Program
Control
Register

User Thread Mode

4.2.3

The three stage pipelining includes:

Pipelining

m Fetch — The instruction is fetched from memory

m Decode — Generating the addresses and branch predic-
tion

m  Execute — Instruction execution based on the address
and branches

The branch prediction unit is enhanced so that it gives
nearly no ALU usage penalty.

Pipelining can give zero to two wait states when executing
an instruction.

4.2.4

The Cortex-M3 supports a wide range of 16- and 32-bit
instructions. It does not support all ARM instructions, includ-

ing:

Thumb-2 Instruction Set

Branch with link and exchange state
Switch endian

Certain coprocessor instructions
Hint instructions

DSP instructions

Change process instructions

The instruction includes these data processing operations:
Multiply and divide

Bit

Shift

Load store

Branch

Barrier

Exception generating

System
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Privileged Handle

Mode
Exception
Entry / Exit
Privileged Thread Default
g ——

Mode

m Saturation
m Miscellaneous

Cortex-M3 supports unique instructions. The following table
is a summary of the important instructions:

Table 4-1. Cortex-M3 Unique Instructions

Instruction Functionality
MSR, MRS To access special registers
IT _IF—T_HEN in_struction supporting up to 4 succeed-
ing instructions
CBZ, CBNZ Compare and then branch
SDIV, UDIV Signed and Unsigned Divide

Reverse the byte order in data word, upper half

REV, REVH, REVSH word, lower half word, respectively

RBIT Reverses bit order in a data word

SXTB, SXTH, UXTB, .

UXTH Extend a byte or half word into a word
BFC - Clears any number of adjacent bits in any
position

BFC, BFI . . .
BFI — Copies any number of bits from any register
to another register to any mentioned location

UBFX, SBFX Unsigned and signed bit field extract instructions

LDRD, STRD Transfer 2 words of data from or into 2 registers

TBB, TBH Table Branch Byte and Table Branch Halfword for

branch tables

The following sections detail some of the instruction types.
For the entire summary of the instruction set, refer to the
Cortex-M3 Technical Reference Manual available at http://
infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/
DDIO337E_cortex_ m3_rlpl trm.pdf.

42.4.1

The Cortex-M3 provides many different instructions for data
processing. A few basics are introduced here. Many data
operation instructions can have multiple instruction formats.

Data Processing Operations
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The Cortex-M3 supports arithmetic functions ADD, SUB
(subtract), MUL (multiply), and UDIV/SDIV (unsigned and
signed divide).

The Cortex-M3 supports 32-bit multiply instructions and mul-
tiply accumulate instructions that give 64-bit results. These
instructions support signed or unsigned values.

Another group of data processing instructions are logical
operations such as AND, ORR (or), EOR (exclusive OR),
and rotate and shift functions. In some cases the rotate
operation can be combined with other operations.

Another group of data processing instructions is used for
reversing data bytes in a register. These instructions are
usually used for conversion between little endian and big
endian data.

The last group of data processing instructions is for bit field
processing. Instructions such as BFC, BFI, SBFX, and
UBFX are used to clear, set, and copy bits with sign exten-
sion or zero extension.

4.2.4.2

One of the most basic functions in a processor is transfer of
data. In the Cortex-M3, data transfers can be one of the fol-
lowing types:

Load Store Operations

m  Moving data between register and register

m  Moving data between memory and register

m Moving data between special register and register
m  Moving an immediate data value into a register

The command to move data between registers is MOV
(move). For example, moving data from register R3 to regis-
ter R8 looks like this:

MOV R8, R3

Another instruction can generate the negative value of the
original data; it is called MVN (move negative).

The basic instructions for accessing memory are Load and
Store. Load (LDR) transfers data from memory to registers,
and Store transfers data from registers to memory. The
transfers can be in different data sizes (byte, half word,
word, and double word).

Multiple Load and Store operations can be combined into
single instructions called LDM (Load Multiple) and STM
(Store Multiple).

ARM processors also support memory accesses with pre-
indexing and post-indexing. Two other types of memory
operation are stack PUSH and stack POP.

The Cortex-M3 has a number of special registers. To access
these registers, use the instructions MRS and MSR.
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4.2.4.3

The branch operations include:

Branch Operations

m Call and Unconditional branch instructions
m Decision and Conditional branch instructions
m  Combined Compare and Conditional Branch
m  Conditional Branching using IT instructions

The IT (IF-THEN) instruction block is very useful for han-
dling small conditional code. It avoids branch penalties
because there is no change to program flow. It can provide a
maximum of four conditionally executed instructions with
one condition check.

4.2.4.4 Instruction Barrier and Memory
Barrier Instructions

The Cortex-M3 supports a number of barrier instructions.
These instructions are needed with complex memory sys-
tems. In some cases, if memory barrier instructions are not
used, race conditions can occur.

There are three barrier instructions in the Cortex-M3:

m DMB (Data Memory Barrier) — Ensures that all memory
accesses are completed before new memory access is
committed. For example, when you do a data write fol-
lowed immediately by a read on a dual port memory;, if
the memory write is buffered, the DMB instruction can be
used to ensure the read gets the updated value.

m DSB (Data Synchronization Barrier) — Ensures that all
memory accesses are completed before the next
instruction is executed

m ISB (Instruction Synchronization Barrier) — Flushes the
pipeline and ensures that all previous instructions are
completed before executing new instructions

4.2.4.5

The Cortex-M3 supports two instructions that provide signed
and unsigned saturation operations: SSAT and USAT (for
signed data type and unsigned data type, respectively).

Saturation Operations

Saturation is commonly used in signal processing, for exam-
ple, in signal amplification.

The saturation operation does not prevent the distortion of
the signal, but the amount of distortion is greatly reduced in
the signal waveform.

4.2.5

The SysTick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real time system. The timer has a reload
register with 24 bits available to use as a countdown value.

SysTick Timer
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The timer can take an internal clock (the free running clock
on the CM3 processor) or an external clock through the
STCLK. In PSoC 5LP devices use one of three sources as,
ILO (1 kHz), ILO_100 (100 kHz), or the SYSCLK (BUSCLK).

4.2.6

The Cortex-M3 provides a wide range of debugging compo-
nents. The debug unit is tightly linked with the core.

Debug and Trace:

The important features of the debug and trace are:

m Debug access to all memory and registers in the system
including Cortex-M3 register bank when the core is run-
ning, halted, or held in reset.

m Serial Wire Debug Port (SW-DP) and Serial Wire JTAG
Debug Port (SWJ-DP) debug access.

m Flash Patch and Breakpoint (FPB) unit for implementing
breakpoints and code patches.

m Data Watchpoint and Trace (DWT) unit for implementing
watchpoints, data tracing, and system profiling.
Support for six breakpoints and four watchpoints.
Instrumentation Trace Macrocell (ITM) for support of
printf style debugging.
Embedded Trace Macrocell (ETM) for instruction trace.

Trace Port Interface Unit (TPIU) for bridging to a Trace
Port Analyzer (TPA).

The Cortex-M3 supports a separate debug and trace inter-
face. The debug interface uses the APB (Access Port Bus),
which supports both JTAG and SWD. The trace interface
uses the TPIU (Trace Port Interface Unit).

For further details about the debug and trace feature, see
the Test Controller chapter on page 403 and the Cortex-M3
Debug and Trace chapter on page 415.

4.3

The Cortex-M3 has a linear 32-bit (4 GB) address space, as
shown in Figure 4-7. See also the Memory Map chapter on
page 105.

Memory Map

The address space includes two bit-band alias regions, one
for the SRAM space and the other for the Peripherals space.
Accesses to a bit-band alias region affect individual bits in
the corresponding bit-band region. For example, writing a 1
to address 0x22000000 sets bit 0 of address 0x20000000,
and writing a 0 to address 0x42000004 clears bit 1 of
address 0x40000000. Reading address 0x22000008 returns
a 1 or 0, depending on the value of bit 2 of address
0x20000000.

The processor supports unaligned accesses. Unlike aligned
access where the data can be situated only at even
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addresses, the unaligned accesses support data operations
at odd addresses also. Unaligned accesses have limitations.
Some instructions cannot support unaligned accesses.

You can execute code from within the code, SRAM, or the
external RAM space.

The Cortex-M3 uses little-endian format.

4.3.1 Bus Interface to SRAM Memory

The 64 KB of SRAM in PSoC 5LP is split into two 32 KB of
SRAM. The SRAM can be accessed by the C-Bus, S-Bus,
and the PHUB's DMA. The priority decoder gives a higher
priority to the C-Bus in the upper 32 KB of SRAM, whereas
the PHUB DMA takes a higher priority in the lower 32 KB of
SRAM. The upper and lower halves of SRAM can be
accessed simultaneously but with different buses.
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Figure 4-7. Cortex-M3 Memory Map
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system exceptions and 16 and above for external interrupt
inputs. PSoC 5LP architecture supports 32 external inter-
The Cortex-M3 provides a feature-packed exception archi- rupts.

tecture that supports a number of system exceptions and
external interrupts. Exceptions are numbered 1 to 15 for

4.4 Exceptions

The exceptions are handled by the NVIC.
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Most of the exceptions have programmable priority, and a few have fixed priority. Table 4-2 shows the list of exceptions avail-

able in the Cortex-M3:

Table 4-2. PSoC 5LP Exceptions

I“Ler;réjgrt Exception Type Priority Comment

1 Reset -3 (highest) Not programmable | Reset

2 NMI -2 Not programmable Non-Maskable Interrupt

3 Hard Fault -1 Not Programmable All fault conditions if the corresponding handler is not enabled

4 Reserved NA -
Bus error occurs when AHB interface receives an error response from a

5 Bus Fault Programmable bus slave (also called prefetch abort if it is an instruction fetch or data
abort if it is a data access)

6 Usage Fault Programmable Exceptions due to program error

7 Reserved NA -

8 Reserved NA -

9 Reserved NA -

10 Reserved NA -

11 Svcall Programmable System Service Call

12 Debug Monitor Programmable Debug monitor (watchpoints, breakpoints, external debug request)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

The value of the current running exception is indicated by
the special register IPSR or from the NVIC's Interrupt Con-
trol State Register (the VECTACTIVE field).

Interrupts are a subset of exceptions. So exceptions are
handled the same way as an interrupt. The exception han-
dler for each exception is stored in the interrupt vector table.
The vector table begins with the exception handler and is
followed by the interrupt service routine addresses. The vec-
tor table pointer is dynamically changeable. Also, if the vec-
tor table is in SRAM, then vectors can be dynamically
changeable.

44.1

In the Cortex-M3, whether and when an exception can be
carried out can be affected by the priority of the exception. A
higher priority (smaller number in priority level) exception
can preempt a lower priority (larger number in priority level)
exception; this is the nested exception/interrupt scenario.
From the above table, you can see that some of the excep-
tions (reset, NMI, and hard fault) have fixed priority levels.
They are negative numbers to indicate that they are higher
priority than other exceptions. Other exceptions have pro-
grammable priority levels.

Priority Definitions

4.4.2

A number of system exceptions are useful for fault handling.
There are several categories of faults:

Fault Exceptions
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Bus faults

Memory Management Faults
Usage Faults

Hard Faults

The faults can be enabled by setting the corresponding bits
in the handler control and state register. The reason for a
particular fault is updated in the corresponding status regis-
ter (for example, BFSR register for bus fault, MFSR for
memory management fault, UFSR for Usage Fault, HFSR
for Hard Fault). These registers can be read to know the
exact reason for fault.

When these types of faults (except vector fetches) take
place, and if the corresponding exception handler is enabled
and no other exceptions with the same or higher priority are
running, the fault exception handler will be executed. If the
exception handler is enabled but at the same time the core
receives another exception handler/interrupt with higher pri-
ority, this fault exception handler will be pending and will be
executed after the high priority exception/interrupt has com-
pleted its execution.

If the fault handler is not enabled or when the fault happens
in an exception handler that has the same or higher priority
than the current fault handler, the hard fault handler will be
executed instead.

Bus Faults
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Bus faults are produced when an error response is received
during a transfer on the AHB interfaces. It can happen dur-
ing prefetch, data read/write, or during stacking and un-
stacking operations.

Memory Management Faults
Memory management faults can be caused by certain illegal
accesses, including the following:

m  Trying to execute code from non-executable memory
regions

Writing to read-only regions

Access in the user state to a region defined as privileged
access only

Usage Faults

Usage faults can be caused by a number of things, including
the following:

m  Undefined instructions

m  Coprocessor instructions (the Cortex-M3 processor does
not support a coprocessor, but it is possible to use the
fault exception mechanism to run software compiled for
other Cortex processors via coprocessor emulation)

m  Trying to switch to the ARM state (software can use this
faulting mechanism to test whether the processor on
which it runs supports ARM code; because the Cortex-
M3 does not support the ARM state, a usage fault takes
place if there is an attempt to switch)

m Invalid interrupt return (link register contains invalid/
incorrect values)

m  Unaligned memory accesses using multiple load or store
instructions

It is also possible, by setting up certain control bits in the

NVIC, to generate usage faults for:

m Divide by zero

m  Any unaligned memory accesses

Hard Faults

The hard fault handler can be caused by:

m Usage faults, bus faults, and memory management
faults if their handler cannot be executed.

m Bus faults during vector fetch (reading of a vector table
during exception handling).

4.4.3 System Call Exceptions

SVC (System Service Call) and PendSV (Pended System
Call) are two exceptions targeted at software and operating
systems.
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SvC

SVC is for generating system function calls. It can be config-
ured to generate an interrupt. This interrupt can be used for
task management in a realtime system. SVC is generated
using the SVC instruction.

PendSV

PendSV works with SVC in the OS. Although SVC (by SVC
instruction) cannot be pended (an application calling SVC
will expect the required task to be done immediately),
PendSV can be pended and is useful for an OS to pend an
exception so that an action can be performed after other
important tasks are completed. PendSV is generated by
writing ‘1’ to the NVIC PendSV pending register. A typical
use of PendSV is context switching.

SysTick Timer Exception

The SysTick Timer exception takes the vector number 15.
Cortex-M3 supports a 24-bit down counter. This timer is very
useful to perform task management where the software can
be handled inside the timer interrupt.

The SYSTICK Timer can be used to generate interrupts. It
has a dedicated exception type and exception vector. It
makes porting operating systems and software easier
because t he process is the same across different Cortex-
M3 products.

The SYSTICK Timer is controlled by four registers. Of the
four registers, TICKINT is used to enable or disable the
timer exception.

4.5 Nested Vector Interrupt

Controller (NVIC)

The Nested Vectored Interrupt Controller, or NVIC, is an
integral part of the Cortex-M3 processor. It is closely linked
to the Cortex-M3 CPU core logic. Its control registers are
accessible as memory-mapped devices. Besides control
registers and control logic for interrupt processing, the NVIC
also contains control registers for the SYSTICK Timer, and
debugging controls.

Following are the important features of the NVIC:

Supports 32 interrupts and 16 exceptions.

Configurable priority levels.

Dynamic reprioritization of interrupts.

Support for nested interrupts

Programmable interrupt vector

Supports tail-chaining and late arrival interrupts. This
enables back-to-back interrupt processing without the
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overhead of state saving and restoration between inter-
rupts.

m Processor state automatically saved upon interrupt
entry, and restored upon interrupt exit, with no instruc-
tion overhead.

45.1

Each external interrupt has several associated registers.

Basic Interrupt Configuration

m Enable and Clear Enable

Set Pending and Clear Pending
Priority Level

Active Status

Exception-masking registers (PRIMASK, FAULTMASK,
and BASEPRI)

m Vector Table Offset

The interrupt enable and clear enable registers are 32-bit
registers. They are used to enable/disable an interrupt. An
interrupt that is waiting for the CPU execution sets the pend-
ing bit in the set pending register. After the interrupt is exe-
cuted by the CPU, the interrupt is cleared automatically by
setting the clear-pending register. The interrupts can take
priorities 0 to 7. The priorities are configured using the 3-bit
priority registers. They can be dynamically configured during
run time.

The Active Status register stores the details of the interrupt
currently active. A bit set in this register indicates that the
corresponding interrupt is currently active. An interrupt is
called active if it is currently executed by the CPU or if it is
already nested and put to the stack. After the interrupt exe-
cution is complete, the active status bit of the interrupt is
automatically cleared. With PSoC 5LP devices, the
addresses of the interrupt service routine are stored in the
Interrupt vector table. The interrupt vector table can be
located either in RAM or ROM. The position of the vector
table is controlled using the Vector Table Offset register.

The exception masking registers, PRIMASK, FAULTMASK

and BASEPRI, are special registers used to mask the inter-

rupts and exceptions.

m PRIMASK — When set, all interrupts except NMI and
Fault interrupts are masked

m FAULTMASK — When set, all interrupts except NMI are
masked

m BASEPRI — Masks all interrupts at the specified priority
and lower priorities

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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45.1.1 Example Procedures in Setting Up

an Interrupt

Here is a simple example procedure for setting up an inter-

rupt:

1. Copy the Hard Fault and NMI handlers to a new vector
table location if vector table relocation is required. (In
simple applications, this might not be needed.)

2. The Vector Table Offset register should also be set up to
get the vector table ready (optional).

3. Set up the interrupt vector for the interrupt. Because the
vector table may have been relocated, read the Vector
Table Offset register; then calculate the correct memory
location for your interrupt handler. This step might not be
needed if the vector is hardcoded in ROM.

4. Set up the priority level for the interrupt.

5. Enable the interrupt.

45.2

Nested interrupt support is built into the Cortex-M3 proces-
sor core and the NVIC. The nesting is done based on the
priority of the interrupts. When the processor is handling an
exception, all other exceptions with the same or lower prior-
ity will be blocked. When a high priority interrupt occurs, the
low priority interrupt is nested and the high priority interrupt
completes the execution. Because automatic hardware
stacking and unstacking is done, nesting is done without risk
of losing data in registers. Cortex-M3 uses the main stack to
store the nesting interrupt details; therefore, ensure suffi-
cient stack space is available.

Nested Interrupts

Reentrant exceptions are not supported in the Cortex-M3.

4.5.3

The Cortex-M3 uses a number of methods to improve inter-
rupt latency. Tail-chaining is one such method.

Tail-Chaining Interrupts

When an exception takes place but the processor is han-
dling another exception of the same or higher priority, the
exception will be pended. When the processor has finished
executing the current exception handler, instead of POP, the
registers go back into the stack and PUSH it back in again,
skipping the unstacking and the stacking. In this way the
timing gap between the two exception handlers is greatly
reduced.

45.4

Another feature that improves interrupt performance is late
arrival exception handling. When an exception takes place
and the processor has started the stacking process, and if
during this delay a new exception arrives with higher pre-

Late Arrivals
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emption priority, the late arrival exception will be processed
first.

For example, if Exception #1 (lower priority) takes place a
few cycles before Exception #2 (higher priority), the proces-
sor will behave such that Handler #2 is executed as soon as
the stacking completes. After this the Handler #1 will be exe-
cuted.

4.5.5

The term interrupt latency refers to the delay from the start
of the interrupt request to the start of interrupt handler exe-
cution.

Interrupt Latency

m In the Cortex-M3 processor, if the memory system has
zero latency, and provided that the bus system design
allows vector fetch and stacking to happen at the same
time, the interrupt latency can be as low as 12 cycles.
This includes stacking the registers, vector fetch, and
fetching instructions for the interrupt handler. However,
this depends on memory access wait states and a few

other factors.

For tail-chaining interrupts, because there is no need to
carry out stacking operations, the latency of switching
from one exception handler to another exception handler
can be as low as 6 cycles.

When the processor is executing a multi-cycle instruc-
tion such as divide, load double, or store double, the
instruction can be abandoned and restarted after the
interrupt handler completes.

To reduce exception latency, the Cortex-M3 processor
allows exceptions in the middle of multiple load and
store instructions (LDM/STM). If the LDM/STM instruc-
tion is executing, the current memory accesses will be
completed, and the next register number will be saved in
the stacked xPSR (ICI bits). After the exception handler
completes, the multiple load/store will resume from the
point at which the transfer stopped.

4.5.6

Faults (bus fault, memory fault) can happen during the fol-
lowing stages of interrupt execution:

Faults Related to Interrupts

m  Stacking
m  Unstacking
m Vector Fetches
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The cache block is an Instruction cache only. It services instruction fetches from the CPU. It stores lines of code from the
flash in its internal buffer for fast accesses made by the CPU at a later time.

51 Features

Instruction cache

Direct mapped

1 KB, 4-way set associative cache memory
Registers for measuring cache hit/miss ratios
Error correction code (ECC) support

Error logging and interrupt generation

Designed to put flash into sleep automatically to save power

5.2 Block Diagram

Figure 5-1 shows the system interaction with the cache block as well as the cache interfaces and data/instruction flow.

Figure 5-1. Cache Interfaces
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Interface Function

1 CPU sends instruction fetch request through this interface to the cache and eventually receives back the instruction

2 When the CPU instruction fetch that gets a hit in the cache, it is retrieved from the cache memory (RAM) through this interface.

3 CPU instruction fetch (interface #1) that gets a miss in the cache is translated into one fetch request from the FLASH. The FLASH access time
is much larger than the Cache RAM access time, up to 4 CPU clock cycles.

4 Instructions returned from the FLASH are cached through this interface for later CPU use. Note that requests from the PHUB interface are
never cached.

5 The CPU can read and write data using this interface. The internal cache registers and RAM are also accessible and FLASH contents are
readable using this interface through PHUB's special register spoke.

53 Cache Enabling and 5.5.1 Measuring Cache Hits or Misses

Disabling

To enable the cache, set the DISABLE bit (Bit 0) of
CACHE.CC_CTL registertto 0.

54 Code Protection and

Security

The ECC block is responsible for error detection and correc-
tion. The cache gets the error status from the ECC block for
requested fills from the flash. The error status gets logged
into software visible registers in the cache. An uncorrectable
error will prevent the fill data from being written into the
cache RAM and causes entire line to be invalidated.

ECC_ADDRJ[0:28] field of CACHE.ECC_CORR register
gives the flash address where error was detected; this
address field is valid only when INT_VALID field of this reg-
ister is set to 1. Interrupt can also be generated on ECC cor-
rection by setting INT_ENB bit of CACHE.ECC_CORR
register.

If ECC correction fails, then the flash address where error
happened can be obtained from CACHE.ECC_ERR regis-
ter.

ECC data in flash will change every time a write is done to
the corresponding flash row. When a flash region is read,
the corresponding ECC data will be used for error checking.
The error checking is dynamic and happens every time the
cache reads from the flash; this means, the comparison is
for the latest data written to flash.

5.5

Software can invalidate all cached data associated with an
interface by setting the Flush bit (Bit 2) of CACHE.CC_CTL
register. Invalidate takes effect in 1 cycle and affects all
lines.

Invalidating the Cache Line

52

The CACHE.HITMISS register provides two 16-bit counters
that count the number of cache hits and misses. To measure
the cache performance, reset the HITMISS register to 0 at
the start of the block of code to measure. Then the code is
executed and at the end of the code under measurement,
the HITMISS register should be read. The cache hit ratio
can be computed as-

Cache hit ratio = the number of cache hits (HIT-
MISS[31:16])/Number of cache misses (HITMISS[15:0])

5.6 Cache Induced Flash Low-

power Mode

Flash is put to low-power mode when the cache predicts
that a flash access is not needed in the near future, based
on reaching a programmed number of sequential hits. This
feature helps to reduce the overall power consumption of
the device. The threshold value of sequential hits can be
programmed in LP_MODE bits of CACHE.CC_CTL register.
To put the FLASH into low-power mode immediately,
LP_MODE bits should be set to 0. This should be done
when executing code from SRAM.

5.7

When the device wakes up from low-power modes, all
cache data and tags are invalidated. However, all the cache
registers (where cache settings are made) maintain their
state and are not reset. The cache will be refilled as the
CPU begins fetching instructions.

Sleep Mode Behavior

Cache status on system reset:

On reset, cache is invalidated and begins to fill with the first
request from the CPU.
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5.8 Cache Limitations

All instructions are assumed to be in the flash. There is no
direct path from the cache to the external memory. Instruc-
tions from the external memory must be explicitly moved
into the flash by software, before they can be used by the
CPU.

Cache coherency is the software's responsibility; no hard-
ware mechanism exists to ensure coherency. If the software
modifies the FLASH or memory contents, it also needs to
invalidate the cache and ensure the new instruction is
fetched into the cache.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

PSoC 5LP Cache Controller

53



o CYPRESS

PSoC 5LP Cache Controller ~mg> EMBEDDED IN TOMORROW

54 PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



6. PHUB and DMAC

& CYPRESS

s EMBEDDED IN TOMORROW"

PSoC® 5LP devices use a high-performance bus for peripheral access and bulk data transfer. The high-performance bus and
the associated central controller are known as the peripheral hub (PHUB). The PHUB is a programmable and configurable
central bus backbone within a PSoC 5LP device that ties the various on-chip system elements together. It consists of multiple
spokes; each spoke is connected to one or more peripheral blocks. The PHUB also includes a direct memory access control-
ler (DMAC), which is used for data transfer. The DMAC supports multiple DMA channels.

There are two bus masters (blocks that can initiate bus traffic) in PSoC 5LP devices. These are the DMAC and the CPU. An
arbiter in the PHUB is responsible for arbitrating requests from the CPU and the DMAC. Upon receiving a request from the
microcontroller or the DMAC, the PHUB relays the request to the appropriate peripheral spoke.

6.1 PHUB

PHUB manages arbitration between the CPU and DMAC.

6.1.1 Features

The PHUB has the following features:

Industry-standard Advanced Microcontroller Bus Architecture High-performance Bus (AMBA-HB) lite protocol
8 spokes connected to various peripherals

8-/16-/32-bit data-width support

Peripherals of various address widths connected to the same spoke

Includes programmable DMAC with 24 direct memory access (DMA) channels

Byte order and data width difference translation

6.1.2 Block Diagram
Figure 6-1 on page 56 is the block diagram of the PHUB. The DMAC is also shown.
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Figure 6-1. PHUB Block Diagram
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6.1.3 How It Works

The PHUB is used to connect the CPU to memory and
peripherals, including SRAM, flash, EEPROM, analog sub-
system, digital blocks, digital filter block, and others.

The PHUB connects to the peripherals using a spoke. There
are eight spokes. Each spoke connects to one or more
peripherals. Each spoke is configured for:

m  Address width — The address width of a spoke depends
on the maximum number of addresses required for the
peripherals connected to the spoke.

m Data width — The data width of a spoke can be 16 or
32 bits. Eight-bit data transfer can be performed on 16-
and 32-bit spokes.

m  Number of peripherals — This depends on the device
architecture. Each spoke is usually connected to multiple
peripherals.

Table 6-1 shows the address width, data width, and periph-
erals connected to each spoke in the PSoC 5LP device.

A
‘o e o o o .I
Spokes to Peripherals

Table 6-1. Spoke Configuration

Address Data
Spoke | Width Width Peripheral Names
(in bits) | (in bits)
0 14 32 SRAM
1 9 16 I/0 interface, port interrupt control unit
(PICU), external memory interface (EMIF)
2 19 32 PHUB local spoke, power management,
clock, serial wire viewer (SWV), EEPROM
3 11 16 Delta-sigma ADC, analog interface
; o . )
4 10 16 QSB, CAN, fixed-function 1<C, fixed-function
timers
5 11 32 Digital filter block (DFB)
6 17 16 UDB set 0 registers (including DSI, configu-
ration, and control registers), UDB interface
UDB set 1 registers (including DSI, configu-
7 17 16 . .
ration, and control registers)
m The peripherals connected to each spoke can have data

widths longer than the spoke. For example, a Delta-
Sigma ADC can support up to 20-bit data although it is
placed in the 16-bit spoke (spoke 03).

In this case, the PHUB uses an internal FIFO to accom-
modate the width differences during data transfer.
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m  One peripheral can extend across multiple spokes. In
this case, the peripheral will have different address
spaces that are connected to each spoke.

For example, Table 6-1 shows that UDB registers extend
across two spokes. UDB registers can be accessed in
8-bit mode and also in 16-bit mode. In this case, the 8-bit
mode access needs a different address space than the
16-bit mode access though they reside in the same
spoke.

m Peripherals of different data widths can be connected to
a single spoke.

An example of this is spoke 3, which is connected to the
analog interface (digital-to-analog converter) and delta-
sigma ADC. The delta-sigma ADC can support up to
20-bit data, and the digital-to-analog converter register is
8-hit.

m  Spoke 0 is connected to SRAM. The CPU can access
the SRAM without going through the PHUB. The DMAC
accesses the SRAM through PHUB.

The spoke address width, data width, and peripherals are
fixed in a device and cannot be changed. The spoke and the
peripheral details affect the time required for data transfer.
interspoke and intraspoke transfers take different amounts
of time.

The effects of spoke data width, and interspoke and intra-
spoke transfer, on latency of data transfer are explained in
6.1.4 Arbiter.

6.1.4 Arbiter

The PHUB receives data read or write requests from either
the CPU or the DMAC. The PHUB processes each request
to determine which spoke and peripheral should be
accessed, and then manages the data access.

When the DMAC and CPU initiate transactions in the PHUB
at the same time, the arbiter decides which request has pri-
ority. The priority can be configured for every spoke except
spoke 0. Spoke 0 is accessed only by the DMAC because
the CPU has a separate interface to SRAM. You can config-
ure priority using the “spk_cpu_pri” bits in the PHUB_CFG
register.

When the CPU and DMAC access different spokes simulta-
neously, both accesses are independent and arbitration is
not necessary. This enables a multiprocessing environment.
The exception is the SRAM, which has direct access by the
CPU and PHUB. In this case, there is no arbitration required
for SRAM. This helps to reduce the SRAM latency access.

The arbitration issues when the CPU and DMA want to
access the same spoke simultaneously are detailed in fur-
ther sections.
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6.2 DMA Controller

The DMA Controller (DMAC) transfers data between mem-
ory and peripherals.

m Uses the PHUB for data transfer
Includes 24 DMA channels

Includes 128 transaction descriptors (TD)
Eight levels of priority per channel

Transactions can be triggered by any digitally routable
signal, the CPU, or another DMA channel

Transactions can be stalled or canceled
Each transaction can be from 1 to 64 KB

Large transactions can be broken into smaller bursts of 1
to 127 bytes with Intraspoke burst count restricted to
<16.

m Each channel can be configured to generate an interrupt
at the end of transfer

m Supports byte swapping, for conversion between big-
endian and little-endian formats

m Handles data-width differences

6.2.1

As shown in Figure 6-1 on page 56, the PHUB includes local
memory to store configuration data. The local memories are
called

Local Memory

m Configuration memory (CFGMEM)
m Transaction descriptor memory (TDMEM)

The PHUB also includes a 16-byte FIFO for data handling
during data transfers.

The CGFMEM is used to store the DMA channel configura-
tion data. There are two registers: CFGMEMn.CFGO and
CFGMEMN.CFG1 (where n can be from 0 to 23) for each
channel. Each register is 32 bits, so the size of CFGMEM is
8 bytes x 24 channels = 192 bytes.

The TDMEM is used to store the TD configuration data,
which includes the number of bytes to transfer, source
address, destination address, next TD, and other configura-
tion data. Each TD has two registers: TDMEMn.ORIG_TDO
and TDMEMNn.ORIG_TD1. Each register is 32 bits, so the
size of TDMEM is 8 bytes x 128 TDs = 1 KB of memory.

The local memory is accessed through the local spoke of
the PHUB (see Table 6-1 on page 56).

6.2.2 How the DMAC Works

The DMAC is one of the bus masters for PHUB. The DMAC
can perform the following data transfers:
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Memory to memory

Memory to peripheral

Peripheral to memory

Peripheral to peripheral

Any DMA channel goes through the following phases to per-
form data transfers:

Arbitration phase

Fetch phase

Source engine phase

Destination engine phase
Write back phase

The total time required for a DMA transfer depends on the
time taken for each phase. The DMA transfer can be either
an intraspoke DMA transfer or interspoke DMA transfer

In an intraspoke transfer, the data transfer happens within
the same spoke. This transfer makes use of the internal
FIFO.

m  Arbitration phase

The DMAC selects which DMA channel to process
based on the priority.

m Fetch phase

The DMAC fetches the TD and DMA channel details
from the configuration registers.

m  Source engine phase
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The source engine selects the spoke to which the source
peripheral is connected. When the spoke is available for
data transfer, the data transfer from the source begins.

m Destination engine phase

This phase selects the spoke on which the destination
peripheral is available. When the spoke is available, the
data collected in the source engine phase is transferred
to the destination peripheral.

m  Write back phase

This phase is the completion phase were the TD and
DMA channel configurations are updated after data
transfer.

Ideal conditions for data transfer are:

Single requestor

CPU doesn't interrupt the fetch phase

Both source and destination spoke are readily available
Source spoke and destination spoke are of same width
Source and destination address start at even addressing
Transfer count is a multiple of burst count

Burst count matches the spoke width

The number of bursts for transfer (N) =
Transfer count + Spoke width

6.2.2.1

The timing diagram for an interspoke transfer under ideal
conditions is shown in Figure 6-2.

Interspoke Transfers

Figure 6-2. Interspoke Transfer Cycle Timing

DMA request

latch phase

Arbitration Phase

Fetch Phase

Control 3 Control 4 - Control N

Phase

. Control Cycles Control 1 X Control 2
Source Engine { 4

Data Cycles Data 1

Data 2 Data3 )-————— Data N-1 DataN

Control 1 Control 2 j——=——=—— Control N-2 X Control N-1 X Control N

Phase

Datal )m===——— Data N-3 Data N-2 Data N-1 DataN

- . Control Cycl
Destination Engine ontrotLycles
Data Cycles

Write Back

Phase

The total number of cycles for data transfer in the case of interspoke DMA transfers is the sum of cycles required for each

phase.

Total cycle time = Arbitration phase time (1) + Fetch phase (1) + Source Engine phase (N + 3) + Destination engine phase (0,
because it happens in parallel with the source engine phase) + Write back phase (1)
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Total cycle time = N + 6 cycles (where N = Transfer count + Spoke width)
Example
You want to move five samples of 16-bit ADC data to memory.

Notes
m  The ADC (decimator) is connected to spoke 3 which is a 16-bit spoke.
m  Memory is in Spoke 0, which is a 32-bit spoke)

The DMA configuration includes:
m  DMA channel burst count (configured in CFGMEMn.CFGO0) = 2
m TD transfer count (configured in TDMEMn.ORIG_TDO) = 2 bytes x 5 samples = 10

m TD configuration includes an Increment Destination Address to copy data to an array in the memory (configured in
TDMEMn.ORIG_TDO)

m N = Transfer count + Spoke width=10+2=5
For more information about the DMA configuration, refer to the PHUB registers in the PSoC 5LP Registers TRM.
The source engine phase needs N + 3 cycles = 8 cycles.

Total cycle time required for interspoke transferis N + 6 =5 + 6 = 11 cycles.

6.2.2.2 Intraspoke Transfer
The timing diagram for intraspoke transfer under ideal conditions is shown in Figure 6-3.

Figure 6-3. Intraspoke Transfer Cycle Timing

DMA request
latch phase

Arbitration Phas¢ ——— <« >—"— — .

FetchPhase — —— — (¢ »— .

. Control Cycles Control 1 X Control 2 X Control 3 Control N
Source Engine
Phase
Data Cycles Data 1 Data 2 ————< DataN-1 Data N
- ; Control Cycles Control 1 ) Control 2 Y Control 3 Y= === —— eontol N- conor Ny
Destination Engine v oot 5 convel v
Phase
pata Cyles et o o
Write Back

Phase

The total number of cycles for data transfer in the case of intraspoke DMA transfer is the sum of the cycles required for each
phase.

Total cycle time = Arbitration phase time (1) + Fetch phase (1) + Source engine phase (N + 1) + Destination engine
phase (N + 1) + Write back phase (1)

Total cycle time = 2N + 5 cycles (where N = Transfer count + Spoke width)

Intraspoke DMA transfer burst count should be limited to < 16. In intraspoke DMA transfers, because the source and destina-
tion reside in the same spoke, the 16-byte internal FIFO of the PHUB is used as an intermediate buffer. When the FIFO is full,
the PHUB waits for the FIFO to be emptied and the destination engine to read the data, and then fills the next set of data. This
is the reason why the destination engine phase cannot happen in parallel with the source engine phase.

Example
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You want to move four 32-bit data words from one SRAM location to another SRAM location.

Notes

m  SRAM lies in spoke 0, which is a 32-bit spoke.

m In this case, both source and destination is SRAM.

The DMA configuration includes:

m Burst count (configured in CFGMEMN.CFGO) = 4

m  Transfer count (configured in TDMEMN.ORIG_TDO) = 4 bytes x 4 words = 16

m TD configuration includes increment source address and increment destination address to copy data from one array to
another (configured in TDMEMn.ORIG_TDO)

m N = Transfer count + Spoke width =16 +4 =4

The source and destination engine phase needs
2N + 2 cycles = (2 x 4) + 2 cycles = 10 cycles

Total cycle time required for intraspoke transfer is 2N + 5 = (2 x 4 + 5) = 13 cycles

6.2.2.3 Handling Multiple DMA Channels

The DMAC can perform phases in parallel. This helps to reduce the latency for executing data transfer. When multiple chan-
nels need to execute, the channels can be pipelined.

Figure 6-4 shows processing of two DMA channels that were requested at the same time. The figure shows only the inter-
spoke transfer. The same is applicable also for intraspoke transfer.

Figure 6-4. Multiple DMA Channel Processing
Bscok [ | [ L[ L L T L[, ...J.r. oo rreri...JJerrerrir

Arbitration phase for
Channel 1

Fetch phase for
Channel 1

Avrbitration phase for
Channel 2
Command  Data Control Data Control ~ Burst = 1 Burst = 2 Burst=N
Source Engine
Phase for Channel 1

Burst=1 Burst = 2 Burst=N
Destination Engine
Phase for Channel 1

Fetch phase for
Channel 2

Write back
Phase for Channel 1

Command Data Control Data Control  Burst=1  Burst=2 Burst=N
Source Engine
Phase for Channel 2

Burst=1  Burst=2 Burst=N
Destination Engine
Phase for Channel 2

Write Back phase for
Channel 2

6.2.2.4 DMA Channel Priority m Simple Priority: This method handles the channels like
any normal priority algorithm where a high priority chan-

Each channel can take a priority from 0 to 7 with 0 being the . o
nel can interrupt a low priority channel

highest priority. . . ) .

m  Grant allocation Fairness algorithm: In this method, the
The DMAC supports two different methods to handle the pri- channel 0 and 1 take highest priority and no other prior-
ority: simple priority, and grant allocation fairness algorithm. ity can interrupt the channels with priority 0 and 1. A

The priority handling method can be changed by writing to DM';“ Channel of prio_rit)./_O and priority 1 occupy the bus
register PHUB.CFG bit “simple_pri” (bit 23). 100%. Rest of the priorities share the bus based on the

number of channels requested at that time. Because pri-
ority 0 has higher priority than 1, priority O can interrupt
priority 1.
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In both the cases, a DMA channel of low priority can be
interrupted by a high priority channel only during the source
engine phase

Examples using the Grant allocation Fairness Algorithm
Scenario 1

DMAC is free. Channel A with Priority 0 comes

PHUB and DMAC

Under ideal conditions the Arbitration phase takes one
cycle.

Figure 6-5. Priority O and Idle DMAC

Bus Clock | | | | |

Channel A
Priority O

{rbitratiox Fetch >< Data Transfer Write Back 100 % Bus Use

Scenario 2

DMAC is free. Channel B with Priority 1 is executing. Channel A with Priority 0 comes

Figure 6-6. Priority O and Priority 1

Bus Clock
Burst 1 Burst2 Burst 3 BurstN
Channel B 100 % Bus Use before
Priority 1 @ ‘@ S e ——— I ot "'@’ Interruption and after high
4 f Priority Channel Completion
4 Pu s
Request for Channel A = = =~ = Channel B resumes Channel B completed
(Priority 0) arrives _
Chamel A Burst1 BurstM 4 Channel A completed
ann
i Ravl) S— 4 D i 100 % usage of bus
Priority 0 Arbitration, @ -@ Write Back usag
Scenario 3

DMAC is free. Channel B with Priority 2 is executing. Channel A with Priority 0/1 comes

Figure 6-7. Priority 0/1 and Other Low Priority

Burst 1 Burst 2 Burst 3 BurstN
Channel B 100 % Bus Use before
4 A Priority Channel Completion
A N P
Request for Channel A e == == ~ Channel B resumes Channel B completed
(Priority 0/ 1) arrives —
Burst 1 BurstM " Channel A completed

s Data 100 % Bus Use
S DD, N e O,

DMAC is free. Channel B with Priority 3 is executing. Channel A with Priority 2 comes
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Figure 6-8. Lower Priority Channels with Grant Allocation

Bus Clock

Burst 1 Burst 2

Channel B

[ Y I Y I Y ) ) ) ) ) O B

Burst 3 Burst 4

Priority 3

'y Channel A and B
share the bus

Request for Channel A = = ==
(Priority 2) Arrives
Burst 1
Channel A
Priority 2

The channels with priorities 2-7 are given access according
to Table 6-2.

Table 6-2. Priority Levels and Bus Allocation

Priority Level Bus Allocation Percentage

50
25
125
6.3
3.1
15

Njo|jald~jwiN

When DMA channels of varied priority request for DMAC at
a time, 100 percent of bus bandwidth will be allocated for
channels of priority O or 1.

Table 6-2 applies only if DMA channels with priorities 2 to 7
request simultaneously. Otherwise, the DMA channel with
higher priority is given more access than Table 6-2 shows.
Figure 6-9 shows a channel priority wheel that describes
how the next 63 requests are handled if all channels with
priorities 2 to 7 request simultaneously.

If a channel with priority 2 to 7 is NOT requesting, the slots
of the missing channel priority are used by the channel with
the highest priority. In that case, channels with higher priority
get more access than Figure 6-9 shows.

Figure 6-9. DMA Channel Priority Wheel

Channel
Request

DMA Channel
priority wheel

62

CEENY
Iransfer,

Qa(a Tr > Qala Tr: D

4 — — — __ The sharing of bus goes on
- ’until either of the channels
~ / completes the data transfer

Burst 2 Burst 3 Burst 4 Burst

Channel A gets more share of
the bus because of it's priority

G

Because there are as many 24 DMA channels but only 8 pri-
ority levels, there can be multiple channels taking the same
priority levels.

DMAC uses the Round Robin method to handle DMA Chan-
nels with same priority. In case of Round Robin algorithm,
the DMA channel which was not executed recently takes a
higher priority. The execution of same priority DMA channels
when round robin algorithm is enabled depends on

m The last time when the channel was enabled

m If the last time is the same for 2 channels, then DMA
Channel with lower number takes higher priority
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Figure 6-10. Round Robin Scheduling

All Channels have the
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Order of

execution

6.2.2.5 DMA Latency in case of Nonideal

Conditions

The previous section explained the latency in case of ideal
condition. But in real time, the ideal condition rarely exists.
This section explains the latency calculation in case of non-
ideal conditions. The latency calculation in case of nonideal
conditions cannot be explained using formula as against the
ideal condition.

Multiple Requestors

In real time system the PHUB will be requested by multiple
channels and by CPU also.

If there are multiple DMA channels sending request at the
same time, the arbitration phase will take 2 cycles instead of
the ideal 1 cycle

CPU Interrupts with Fetch Phase

The fetch phase ideally takes only 1 cycle for the PHUB to
access the configuration registers through the PHUB local
spoke. When CPU interrupts the fetch phase, the latency
depends on when the CPU releases the configuration regis-
ters. Typically CPU takes 2 cycles for the access of configu-
ration registers.

Also, there might be some high priority DMA channel in the
Fetch phase. These scenarios will also add to the DMA
Channel execution latency.

Source and Destination Spokes in Use

The source and destination for a particular DMA Channel
should be free for the channel to use it. In real time, a

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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source or destination spoke may be already used by CPU or
another DMA channel

When source and destination spoke is already in use, the
PHUB does the arbitration. The following flow chart shows
the arbitration mechanism.
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Figure 6-11. DMA Channel Arbitration

Assume Channel A is the DMA
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Yes

s CPU using
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riority spok

/

Spoke released
for the DMA

This latency is not measurable and depends on the real time
situation where same spoke can be accessed by multiple
resources.

Source and destination peripherals are not Ready

When the source or the destination peripheral is not ready to
send or receive data, then the DMA channel has to wait till it
is ready. In case of source peripheral not ready, the DMA
channel will wait for the source peripheral to become ready

In case of destination peripheral not ready, the DMA channel
will use the 16 byte FIFO of the PHUB. It reads the data
from the source and fills it in the FIFO till the destination
peripheral is ready. Thus the internal 16 byte FIFO is used
during intra-spoke transfer and also during the conditions
where the source and destination peripherals are no ready.

Source and destination spoke are of different width

64

\—Channel B using spoke—i

Pboes Channel B have high
Priority

No,

Yes Yes
A Latency depends on CPU N
Current burst for processing time o Current burst for
CPU is completed he C Channel B is
Has the CPU
eleased the spoke?2 Llatenchy tiegendﬁ on burst Is the burst completed
' ength o rtw e otler DMA completed for
channe Channel B \
CPU process is Yes .
interrupted \ Channel B is
Yes interrupted
DMA channel accesses A
the spoke
4 The Channel A accesses Y
DMA channel the spoke
accesses the Channel A
spoke accesses the
spoke
'
DMA Channel y
completes transfer Channel A
completes transfer

The spoke widths play a very important role in latency.
There are chances that the source spoke might be smaller
than the destination spoke and vice versa. In this case the
burst count also plays an important role. Let's see some
examples for this condition

Scenario 1 (Interspoke: 16 bit spoke to 32 bit spoke; Burst of
2)

m  Source: 16 bit spoke (ADC)

m Destination: 32 bit spoke (DFB)

m Burst count: 2 (for 16 bit ADC data)
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Figure 6-12. Data Transfer between 16-bit and 32-bit Spoke

Bus clock

Perigir;edr:tla? (€ Peripheral B
—<2 BytesXZ BylesXZ Bytes)

Burst Count =2
Scenario 2 (Interspoke: 16 bit spoke to 32 bit spoke; Burst of 4)
m  Source: 16 bit spoke (ADC)
m Destination: 32 bit spoke (DFB)
m  Burst count: 4 (for 20 bit ADC data)

Figure 6-13. Data Transfer Between 16 bit and 32 bit Spoke
Bus clock
Perigir:%r:tla? (32 Peripheral B

<o
/. SourceAddr++
BurstCount=4 )
, .

Source address incremented
by source spoke width to read
the next 2 bytes of data

Scenario 3 (Interspoke: 32 bit spoke to 16 bit spoke; Burst of 4)
m  Source: 32 bit spoke (Memory)
m Destination: 16 bit spoke (UDB peripheral)
m Burst count: 4
Figure 6-14. Data Transfer Between 16 bit and 32 bit Spoke

Bus clock

e

— e
/] DestAddr++
BurstCount=4 7/
/

Destination address

Peripheral B (32

Peripheral A (32
bit data)

bit data)

incremented by destination
spoke width to write the next 2
bytes of data

Scenario 4 (Interspoke: 16 bit spoke to 16 bit spoke; Burst of 2)
m  Source: 16 bit spoke
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m Destination: 16 bit spoke
m  Burst count: 2

Figure 6-15. Data Transfer Between Two 16 bit Spoke

Bus clock

M

Peripheral A (16 Peripheral B (16

bit data) bit data)
Burst Count = 2
Scenario 5 (Interspoke: 16 bit spoke to 16 bit spoke; Burst of 4)
m  Source: 16 bit spoke m Burst count: 4
m Destination: 16 bit spoke
Figure 6-16. Data Transfer Between Two 16 bit Spoke
Bus clock
Peripheral A (32 . Peripheral B (32
bit data) \ bit data)
/' SourceAddr++,
DestAddr++

BurstCount=4 7/
/

Source and Destination
address incremented by their
spoke widths to read and write

the next 2 bytes of data

Scenario 6 (Intraspoke: 16 bit spoke; Burst of 1)

m  Source and destination: Same spoke (16 bit)
m Burst count: 1
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Figure 6-17. Intraspoke Data Transfer
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Scenario 6 (Intraspoke: 16 bit spoke; Burst of 2)
m  Source and destination: Same spoke (16 bit) m Burst count: 2

Figure 6-18. Intraspoke Data Transfer
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Source and destination address do not have even addressing

The address of the source and destination play a very important role in deciding the latency. The AHB protocol supports read-
ing from even addresses.

Use this notation for a 32 bit spoke.

Figure 6-19. Addressing in 32 bit Spoke

Address n Byte 0 Byte 1 Byte 2 Byte 3

Address n + 1 Byte 0 Byte 1 Byte 2 Byte 3

Figure 6-20. Addressing in 16 bit Spoke

Address n Byte 0 Byte 1

Addressn +1 Byte 0 Byte 1

Scenario 1: 32 bit spoke, Burst count of 4, Address begins at Byte 1
Figure 6-21. Odd Addressing in 32-Bit Spoke

Bus Clock | | | | | |

Byte 1

Data Read cycles
for Burst = 4

Byte 2 and 3

Byte 0 of
Addr + 1

As seen from the above figure, when the even addressing is not met, the bus cycle increases. In ideal condition where the
address begins at Byte 0, a single cycle is sufficient to read all the 4 bytes.

Scenario 2: 16 bit spoke, Burst count of 2, Address begins at Byte 1

Figure 6-22. Odd Addressing In 16 bit Spoke

Bus Clock | | | |

Byte 1

Data Read cycles
for Burst = 2
Byte 0 of
Addr +1

6.2.2.6 Request per Burst Bit
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The data to be transferred can be split into multiple burst -
each of same size. This feature is useful under the following
situations:

m  When the user doesn't want to hog the bus with a single
channel which has huge data to transfer

m  When the user needs to control the transfer times

The “Request per bit” is bit 7 in CFGMEMnN.CFGO register.
This bit is available for individual channel. When this bit is
set, the DMA needs a request to transfer the next burst of
data. When this bit is set, the DMA channel should go
through the whole process from Arbitration phase till Write
back phase for every burst. Thus the “Request per bit”
parameter will significantly increase the transfer time

6.2.2.7 Work Sep Bit

The “work_sep” bit is bit 5 of the CHn.BASIC_CFG register.
This bit is available for individual channel. When this bit is
cleared, a TD mapped to that particular DMA channel can-
not restore its initial configuration after the data transfer. The
TD will retain its last source address, destination address
and transfer count details at the end of transfer.

When this bit is set, a TD mapped to that particular DMA
channel restores its initial configuration after the data trans-
fer. This is very useful when the TD should be repeated.
When the “work_sep” bit is set, DMA uses a separate pro-
cessing area to store the TD configuration details.

6.3 DMA Transaction Modes

The DMA channels can be chained to perform complex
operation. Similarly TDs can be nested or chained to per-
form complex operations. Chaining of TDs is done using the
bit “next_td_ptr" in TDMEMn.ORID_TDO register. This flexi-
bility of the DMA channel and TD helps to create both sim-
ple and complex cases

General use cases might include the following types

6.3.1 Simple DMA

A single TD is used to transfer data between two peripherals
or memory locations.

Figure 6-23. Simple DMA Transfer

DMA Channel A >

TD A
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6.3.2 Auto Repeat DMA

A static pattern is repetitively read from system memory and
written to a peripheral. This is done with a single TD that
chain to itself.

Figure 6-24. Auto Repeat DMA
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6.3.3 Ping Pong DMA

Double buffering is used to allow one buffer to be filled by
one client, while another client is consuming the data previ-
ously received in the other buffer. In its simplest form, this is
done by chaining two TDs together where each TD calls the
opposite TD when complete.

Figure 6-25. Ping Pong DMA
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6.3.4 Circular DMA

This is similar to ping pong DMA except that it contains
more than two buffers. In this case, there are multiple TDs
where after the last TD is complete it chains back to the first
TD.

Figure 6-26. Circular DMA
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6.3.5 Indexed DMA

An external master requires access to locations on the sys-
tem bus as if those locations were shared memory.
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Example: If a peripheral was configured as an SPI or 12C
slave where an address is received by the external master,
that address becomes an index or offset into the internal
system bus memory space. This is accomplished with an ini-
tial “address fetch” TD that reads the target address location
from the peripheral and writes that value into a subsequent
TD in the chain. This causes the TD chain to be modified
during the process. When the “address fetch” TD completes,
it can move onto the next TD, which has the new address
information embedded in it. This TD carries out the data
transfer with the address location requested by the external
master.

Figure 6-27. Indexed DMA
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6.3.6 Scatter Gather DMA

Multiple noncontiguous sources or destinations are required
to effectively carry out an overall DMA transaction.

Example: A packet can be required to be transmitted off of
the device and the packet elements, including the header,
payload, and trailer exist in various non-continuous loca-
tions in memory. Scatter-gather DMA allows the segments
to concatenate together by using multiple TDs in a chain
that gathers data from multiple locations.

A similar concept applies for the reception of data onto the
device. Certain parts of the received data may need to be
scattered to various locations in memory for software- pro-
cessing convenience. Each TD in the chain specifies the
location for each discrete element in the chain.

6.3.7 Packet Queuing DMA

This is similar to scatter gather DMA, but it specifically con-
notes packet protocols whereby there can be separate con-
figuration, data, and status phases associated with sending
or receiving a packet.

Example: To transmit a packet, a memory mapped configu-
ration register can be written inside a peripheral specifying
the overall length of the ensuing data phase. This configura-
tion information can be setup by the CPU anywhere in sys-
tem memory and copied with a simple TD to the peripheral.
After the configuration phase, a data phase TD (or a series
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of data phase TDs) can begin (potentially using scatter
gather). After the data phase TDs finish, a status phase TD
can be invoked that reads some memory mapped status
information from the peripheral and copies it to a location in
system memory specified by the CPU for later inspection.
Multiple sets of configuration/data/status phase sub-chains
can be strung together to create larger chains that transmit
multiple packets in this way. A similar concept exists in the
opposite direction for the reception of the packets.

6.3.8 Nested DMA

One TD can modify another TD, as the TD configuration
space is memory mapped, just as any other peripheral.

Example: A first TD loads a second TDs configuration and
then calls the second TD. The second TD moves data as
required by the application. When complete, the second TD
calls the first TD, which again updates the second TDs con-
figuration. This process repeats as often as necessary.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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6.4

Register List

Table 6-3. PHUB and DMA Register List

PHUB and DMAC

Register Name

Comments

Features

Specifies prune_clock delay, number of wait states, allocation fairness

PHUB_CFG PHUB General Configuration register algorithm, priority, priority spoke, CPU_CLOCK_EN setting
PHUB detects the following errors:
1. Bus Timeout
2. Unpopulated address access

PHUB_ERR PHUB Error Detection register 3. Peripheral AHB ERROR response

If the error was detected as a result of a CPU access then PHUB will
send an AHB ERROR response to the CPU. If the error was detected as
a result of either a CPU or DMA access then PHUB will set the corre-
sponding bit in the following ERR register.

PHUB_ERR_ADDR

PHUB Error Address register

Contains the address that caused an error to trigger

PHUB_CHI[0..23]_BASIC_CFG

Channel Basic Configuration register

Sets basic channel configurations in gates inside PHUB

PHUB_CHI0..23]_ACTION

Channel Action register

Sets action for each channel

PHUB_CHI[0..23]_BASIC_STATUS

Channel Basic Status register

Provides status information in gates inside PHUB

PHUB_CFGMEM]0..23]_CFGO

PHUB Channel Configuration register O

PHUB_CFGMEM]0..23]_CFG1

PHUB Channel Configuration register 1

Each channel has some configuration information stored in RAM. This
configuration information is called CHn_CFGO/1.

CHn_CFGO0/1 are stored in CFGMEM at {CH_NUM][5:0], 000}.

PHUB_TDMEMI0..127]_ORIG_TDO

PHUB Original Transaction Descriptor 0

PHUB_TDMEMI0..127]_ORIG_TD1

PHUB Original Transaction Descriptor 1

Each channel has a TD chain (as short as one TD in length) that pro-
vides instructions to the DMAC for carrying out a DMA sequence for the
channel. The TD chain is comprised of one or more CHn_ORIG_TDO0/1
TDs.

DMAC accesses the CHn_ORIG_TDO0/1 chain from TDMEM and the
address in TDMEM of the current TD in the chain is {TD_PTR[7:0], 000}.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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The Interrupt Controller provides the mechanism for hardware resources to change the program address to a new location
independent of the current execution in the main code. The interrupt controller also handles continuation of the interrupted
code being executed after the completion of the interrupt service routine.

7.1 Features

The following are features of the interrupt controller:

Supports 32 interrupt lines

Programmable interrupt vector

Configurable priority levels from 0 to 7

Support for dynamic change of priority levels

Support for individual enable/ disable of each interrupt

Nesting of interrupts

Multiple sources for each interrupt line (can be either fixed function, UDB, or from DMA)
Supports both level trigger and pulse trigger

Tail chaining, late arrivals and exceptions are supported in PSoC 5LP devices

7.2 Block Diagram

Figure 7-1 is a block diagram of the interrupt controller.

Figure 7-1. Interrupt Controller Block Diagram
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7.3 How It Works

The interrupt controller supports 32 interrupt signals. The interrupt signal can come from one of the three sources (see
Figure 7-2):

m  Fixed function block

m DMA channels

m  UDB blocks

The interrupt signal routing is very flexible with PSoC 5LP architecture. The interrupt lines pass through a multiplexer. The

mux selects one among the following: Fixed function IRQ (Interrupt request), UDB IRQ with level, UDB IRQ with Edge, and
DMA IRQ. The IDMUX.IRQ_CTL register is used to configure the mux for the IRQ selection.

Figure 7-2. Interrupt and DMA Processing in the IDMUX
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The interrupt controller unit prioritizes and sends the request Table 7-1. Bit Status During Read and Write
to the CPU for execution. The list of interrupt sources and

the corresponding interrupt number is available in the device Register | Operation | |1 Comment
datasheet. ) 1 | Toenable the interrupt

we 0 No effect
7.3.1 Enabling Interru ptS SETEN read 1 Interrupt is enabled

eal

The interrupt controller provides features to enable and dis- 0 |Interrupt is disabled
able individual interrupt lines. The Enable register (SETEN) Write 1 | Todisable the interrupt
and the Clear Enable register (CLREN), respectively, enable CLREN 0 No effect
and disable the interrupt lines. Each bit in the register corre- Read 1 Interrupt is enabled
sponds to an interrupt line; these registers enable and dis- 0 Interrupt is disabled

able interrupts and read the enable status of interrupts. The
register that is updated latest (SETEN or CLREN register)
determines the interrupt enable status. Table 7-1 shows the
status of bits during read and write.
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71.3.2

When the interrupt controller receives the interrupt signal, it
sets the pending bit.

Pending Interrupts

“Set Pending register” (SETPEND) and the “Clear Pending
register” (CLRPEND) also allow the pending bit to be set
and cleared through software. Each bit in the register corre-
sponds to an interrupt line. The pending bit status can be
read by reading these registers. For both pulse/level inter-
rupts, the pending bit is cleared immediately upon receiving
the acknowledgement from the CPU on interrupt entry
(IRA). For pulse interrupts, the pending bit can be set again
by arrival of a new pulse interrupt on the same line after the
IRA. But for level interrupt, the interrupt controller checks
the status of the interrupt line when it receives the acknowl-
edgement from the CPU on interrupt exit (IRC). During that
time, if the interrupt line is still asserted, the pending bit is
reset. If there is no assertion on the interrupt line, the pend-
ing bit remains in cleared state.

Table 7-2. Pending Bit Status

. ] Bit
Register Operation Value Comment
1 To put an interrupt to pending
Write
0 No effect
SETPEND
1 Interrupt is pending
Read - -
0 Interrupt is not pending
1 To clear a pending interrupt
Write
0 No effect
CLRPEND
1 Interrupt is pending
Read
0 Interrupt is not pending

The pending register can also be written by software. When
the software writes a 1 to the pending bit, it activates the
interrupt. When software clears the pending bit, the interrupt
does not occur. When the software request to clear a pend-
ing bit and hardware request to set the pending bit occurs
simultaneously, the hardware request takes the higher
priority.

Setting of the pending bit when the same bit is already set
results in only one execution of the interrupt. The pending bit
can be updated regardless of whether or not the corre-
sponding enable bit is set. If the enable bit is not set, the
interrupt line will be pended until the interrupt is enabled,
unless the user clears the bit. It is advisable to check the
state of the pending bit before enabling the interrupt. The
choice is left to the user, of whether to set the pending bit
before or after the enable bit is set, for enabling the corre-
sponding interrupt.
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7.3.3

The interrupt controller provides a priority handling feature
to help a user assign priority for each interrupt. Characteris-
tics of this feature are as follows:

Interrupt Priority

m Eight levels of interrupt priorities from 0 to 7.

m Priority level 0 is highest and level 7 is lowest.

m Priority levels set using the Interrupt Priority Registers
PRI_[X].

m  Support of dynamic configuration of priority levels — A
change of priority level of an interrupt on the fly does not

affect the current execution of the same interrupt; it
takes effect for the next assertion.

Priority handling is very important in the following cases:

m Casel-Ifaninterrupt (INT B) is asserted when another
interrupt (INT A) is being executed, there are three pos-
sibilities with unique handling sequences:

o If INT A has lower priority than INT B:
1.INT Ais stopped at the point of execution.

2.The details of INT A are pushed to the stack, and
INT B begins to execute.
3.After the execution of INT B, INT A execution is
resumed from the point of its interruption.
o If INT A has higher priority than INT B:
1.INT B has to wait until INT A is executed.
2.After the execution of INT A, INT B can start exe-
cution.
o IfINT A and INT B have equal priority:
L.If INT A'is being executed; INT B has to wait until

INT A is executed. After the execution of INT A,
INT B can start execution.

2.If INT B is being executed; INT A has to wait until
INT B is executed. After the execution of INT B,
INT A can start execution.
m Case 2 — During the simultaneous occurrence of inter-
rupts:
a IfINT A has lower priority than INT B, then INT B
wins arbitration and begins to execute.

o If INT A has higher priority than INT B, then INT A
wins arbitration and begins to execute.

a If INT A and INT B have equal priority, then the inter-
rupt with the lower index number wins arbitration and
begins to execute.
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7.3.4

The interrupt controller supports both Level and Pulse inter-
rupts. The interrupt controller includes the Pulse detection
logic, which detects the rising edge on the interrupt line. The
pulse detection logic pends the interrupt bit whenever it
detects the rising edge. The interrupt controller detects any
assertion in the interrupt signal and executes the interrupt
as follows:

Level versus Pulse Interrupt

m Level Interrupt — With level interrupts, the interrupt
request bit in the corresponding peripheral register must
be cleared by the firmware inside the interrupt service
routine. If the interrupt request bit in the peripheral regis-
ter is set, it results in a level high signal on the interrupt
line. At the interrupt exit, if the interrupt request bit is set
in the peripheral register, the interrupt pending bit is set
again and the interrupt is processed again if it is
enabled.

m Pulse Interrupt — A pulse occurs at the interrupt line.
The low to high edge of the pulse sets the pending bit
and the corresponding interrupt is executed. If the pulse
occurs while the pending bit is already set, the second
pulse has no effect, because the pending bit is already
set. The Pending bit is automatically cleared by the inter-
rupt controller at ISR entry. However, if the pulse comes
while the interrupt is currently active, the interrupt pend-
ing bit is set again, and the interrupt is executed again.
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7.3.5

The interrupt controller controls both Level and Pulse inter-
rupt in the following sequence:

Interrupt Execution

1. Interrupt execution corresponding to the interrupt signal
requires the interrupt to be enabled (assuming priority
and interrupt vector address are programmed already).

2. When an assertion occurs in the interrupt signal, the
pending bit corresponding to the interrupt number is set
in the pending register, indicating that the interrupt is
waiting for its execution.

3. The Priority Decoding unit reads the priority and deter-
mines when the interrupt can be executed.

4. The interrupt controller sends the interrupt request to the
CPU, along with the interrupt vector address for execu-
tion.

5. The CPU receives the request.

6. Interrupt Entry (IRA) — The CPU acknowledges the
interrupt entry. The next assertion in the same interrupt
line can be detected only after the interrupt entry. Any
assertions before that are ignored. The interrupt control-
ler clears the pending bit upon receiving the acknowl-
edgement.

7. The current interrupt number and its priority are pushed
to the interrupt controller stack by the interrupt controller.

8. Interrupt Exit (IRC) — When interrupt execution is com-
pleted, the processor is free to address the next request.
The CPU acknowledges the interrupt exit. At the inter-
rupt exit, the interrupt context (that is, interrupt number
and priority) is popped from the stack.

Figure 7-3 lists the basic operations during an interrupt sig-
nal assertion and its handling.
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Figure 7-3. Interrupt Signal Assertion and Handling

Assertion on the
interrupt Line

A

Set of Pending Bit

A

Send to Priority

Decoding Unit

Is this the highest
priority Interrupt?

Yes

Y

(with IRQ and IVA)

Send request to CPU

A

CPU accepts
request

A

Pending bit cleared
IRA sent by CPU (INTC pushes Interrupt / for Pulse and Level

details to its stack)

Interrupt

A

Interrupt execution

\
Interrupt line is checked
Interrupt Exit acknowledgment (IRC) in case of Level interrupt.
from CPU (INTC pops interrupt details If interrupt line has a high
from the stack) level, the pending bit is

7.4 PSoC 5LP Interrupt
Controller Features

Because PSoC 5LP architecture is based on the Cortex-M3
core, it has additional features supported by the Cortex-M3

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

sent again.

core. In PSoC 5LP devices, the interrupt controller is a part
of the Cortex-M3 core. For more detailed information about
the PSoC 5LP Interrupt Controller, see the ARM Cortex-M3
Technical Reference Manual available at http:/
www.arm.com.
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7.4.1

An active interrupt is the one being executed currently. The
interrupt priority and interrupt number of the active interrupt
are stored in the CPU stack. Whenever an interrupt begins
to execute, the interrupt priority and number are pushed to
the stack. The contents of the stack can be read to find the
Active Interrupt details. With PSoC 5LP devices, the CPU
stack is used. There are two stacks accessed using two dif-
ferent stack pointers: The Process Stack Pointer (PSP) and
the Main Stack Pointer (MSP).

Active Interrupts

Cortex-M3 can be configured to use two stacks. When it is
configured to use both the stacks, the first interrupt uses the
PSP or the MSP to store interrupt details, depending on
which is currently active. The stack grows downwards. A
nested interrupt uses only MSP to store the details. When it
is not configured to use two stacks, only the MSP is used.

PSoC 5LP devices also support an ACTIVE register to store
the active status of the interrupt. Its characteristics are:

m Each bit in the register indicates the active state of the
corresponding interrupt.

m  When the bitis set to 1 in the ACTIVE register, the inter-
rupt is active. When the bit is set to 0, the interrupt is cur-
rently inactive.

m  When the current running interrupt is suspended due to
a high priority interrupt, the state of the current running
interrupt is maintained as “Active” because it continues
its execution after execution of the high priority interrupt.

m The active state of the bit is cleared only after execution
of the interrupt.

PSoC 5LP devices also supports exceptions other than
interrupts. The ACTIVE bits correspond only to interrupts
and not to exceptions. The active status details of excep-
tions are stored in the Exception Status register. Exception
Status registers are not only used to read the active status
but also to enable exceptions.

7.4.2

Nesting of an interrupt occurs when a high priority interrupt
is asserted during a low priority interrupt execution. With
PSoC 5LP architecture, only the CPU stack is available to
store all nesting interrupt details.

Interrupt Nesting

m  Current interrupt number, current interrupt priority

m  Program counter, PSR, RO to R3, R12 and LR

m Depending on the application, other registers from R4 to
R11

The CPU stack grows down while the CPU handles push
and pop.
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The configuration controls how you use PSP and MSP. If
both stacks are used, the Process Stack Pointer or Main
Stack Pointer, which ever is currently active, is used by the
first interrupt. All other nested interrupts use only the MSP. If
only one stack is configured for use, the interrupt details are
stored in the MSP. The sequence is:

1. When the high priority interrupt comes during the execu-
tion of the low priority interrupt, the interrupt controller
sends a request to the CPU and low priority interrupt
execution is stopped by the CPU at that point.

2. The details, such as instruction pointer and other gen-
eral purpose registers for the low priority interrupt, are
pushed to the stack. (The stack used depends on nest-
ing. It can be either MSP or PSP as explained previ-
ously).

3. The number of nesting supported depends on the avail-
ability of stack space. Because system stack is used, the
user should ensure that sufficient stack space is avail-
able. Insufficient stack space causes undetermined
results. After the stack push for the low priority is done,
the details of the current active interrupt (high priority
interrupt) is stored in the CPU stack. The high priority
interrupt executes.

4. After the higher priority interrupt has executed, the inter-
rupt details of the high priority interrupt are popped from
the stack. Following this, the details of the low priority
interrupt (PC and other register details) are popped from
the stack. The low priority interrupt continues its execu-
tion from the point of suspension.

5. Because the push and pop of stack is handled by the
hardware, there is minimum latency; no instruction is
involved in the operation.

Figure 7-4 on page 79 shows a timing diagram of the regis-
ter states during the nesting operation.
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Figure 7-4. Register Timing During Nesting
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In Figure 7-4, INT A is suspended, and the high priority interrupt INT B is executed. During nesting, the INT A is pushed to the
stack. During execution of INT B, INT C occurs. So INT B is pushed, and INT C is executed. After INT C is executed, INT B is
popped and executed. After INT B is executed, the stack is popped. When an interrupt begins to execute, interrupt informa-
tion is stored in the stack; when it completes, the stack is popped. The use of both PSP and MSP is shown. It is assumed that
PSP is active during the first interrupt and that the first active interrupt uses the PSP.
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7.4.3

PSoC 5LP architecture has a feature that allows a user to
specify the interrupt service routine for every interrupt line.
The call of the interrupt service routine corresponding to an
interrupt line is not a branch instruction. The address of the
interrupt service routine is stored in the vector table, which
results in the direct call of the routine. This method of execu-
tion prevents latency in the call of the interrupt service rou-
tine.

Interrupt Vector Addresses

When interrupt assertion occurs, the following sequence
occurs:

1. The address of the interrupt service routine is taken from
the interrupt vector table and is executed.

2. The list of interrupt vector addresses is stored in the vec-
tor table.

The interrupt service routine address is programmable
and is stored in the vector table. The vector table is a
location in the memory and has a base address; the
other vector addresses are accessed as offset from the
base address. By default, the vector table is at location
0x00 in the ROM.

The base address of the vector table can be changed;
the vector table can be moved, either in the ROM itself
or to the RAM. Each vector address is 32 bits long; when
moving the vector table, the user should ensure that
there is enough space to hold the supported 4-byte
addresses for the 32 interrupt lines

3. PSoC 5LP devices contain the Vector Table Offset regis-
ter that contains two data:

Position of vector table in ROM/RAM.

Offset value from the start ROM or RAM region. This off-
set value acts as the base address for the vector table.

4. When the vector table is moved, the boot image should
contain the stack pointer value, Reset vector, NMI vec-
tor, and hard Fault vector, because these are required
for the beginning of execution of code.

5. Because the vector address is 32 bits long, the LSB is
filled with 0x01, and the MSB contains the correspond-
ing 24-bit ISR address to be executed. The presence of
0x01 in the LSB indicates Thumb instructions.

6. During the interrupt signal assertion, the address of the
interrupt service routine (the Interrupt Vector Address
(IVA)) is retrieved from this table and given to the CPU
for execution of the interrupt.

7. Because PSoC 5LP devices also support exceptions,
the vector table has the address corresponding to the 15
exceptions followed by the interrupt service routine
addresses.
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7.4.4

Tail chaining is the process used to reduce interrupt latency.
When a new interrupt assertion occurs at the same time as
another interrupt being executed with the same or higher
priority, the following sequence occurs:

Tail Chaining

1. The new interrupt with a lower priority is pended.

2. After the current interrupt is executed, the details of the
current interrupt in the stack are not popped.

3. The details of the new interrupt are pushed to the stack
and the new interrupt begins its execution.

4. After the execution of the new interrupt, details of the

new interrupt and the previous interrupt are popped from
the stack.

Because stacking and unstacking are avoided between the
two, interrupts, latency is greatly reduced. Tail chaining can
save a maximum of six cycles.

7.4.5

A late arrival interrupt occurs when another interrupt is being
pushed to the stack for execution. Another feature reduces
interrupt latency by handling such late arrival interrupts.

Late Arrival Interrupts

The following sequence describes the process:

1. Alow priority interrupt is asserted.

2. The details of the low priority interrupt are being pushed
to the stack, when a high priority interrupt assertion hap-
pens.

3. After the stacking of the low priority interrupt, the high

priority interrupt is stacked and executed, instead of the
low priority interrupt.

4. After execution of the high priority interrupt, the low prior-
ity interrupt is executed.
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7.4.6 Exceptions

Interrupt Controller

PSoC 5LP architecture supports 15 different exceptions, as shown in Table 7-3.

These exceptions are used to handle fault conditions that can occur in the system. Exceptions can have fixed priority or con-
figurable priority. Exceptions are handled in the same manner as interrupts. The State register is used to enable or disable

exceptions.

Table 7-3. PSoC 5LP Exceptions

I;\]Ler:;grt Exception Type Priority Comments

1 Reset -3 (highest) not programmable Reset

2 NMI -2 not programmable Non-Maskable Interrupt

3 Hard Fault -1 not programmable All fault conditions if the corresponding handler is not enabled

4 Reserved NA -
Bus error; occurs when AHB interface receives an error response from a bus

5 Bus Fault Programmable slave (also called prefetch abort if it is an instruction fetch or data abort if it is
a data access)

6 Usage Fault Programmable Exceptions due to program error

7 Reserved NA -

8 Reserved NA --

9 Reserved NA --

10 Reserved NA -

11 SVCall Programmable System Service Call

12 Debug Monitor Programmable Debug monitor (watchpoints, breakpoints, external debug request)

13 Reserved NA -

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

7.4.7 Interrupt Masking

PSoC 5LP architecture supports special methods to mask
interrupts and exceptions, preventing them from execution.
Any new assertions in the interrupt lines are detected and
pended until the interrupts are unmasked.

Masking of interrupts is different from enabling or disabling.
When masked, the interrupt is blocked for some time, even
though it is enabled. This feature is useful when it is neces-
sary to protect some critical section of code. When interrupts
are masked, pending interrupts are not executed, even
though the interrupts are enabled in the enable register. The
interrupts are executed only when masking is cleared.
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PSoC 5LP devices have special registers to provide mask-

ing facilities, including:

m PRIMASK — When the bit in the PRIMASK register is
set, all interrupts and exceptions except NMI and Hard
fault are blocked.

m FAULTMASK — When the bit in the FAULTMASK regis-
ter is set, all interrupts and exceptions except NMI are
blocked.

m BASEPRI — When interrupts below a certain priority
level must be masked, the priority number can be speci-
fied in the BASEPRI register. All interrupts with a priority
number equal to or less than the priority level specified
in the BASEPRI register are masked.

7.5 Interrupt Controller and

Power Modes

The CPU core (Cortex-M3) can execute even when the
power or clock for the Interrupt Controller is switched off. In
this case, care should be taken during entry/ exit into differ-

81



Interrupt Controller

ent low-power modes (alternate active, sleep and hiber-
nate).

On PSoC 5LP, an interrupt signal coming from a wakeup
source should not be passed through the "Edge Detect"
logic shown in Figure 7-2. The interrupt signal should be
passed directly to the interrupt controller. This is a require-
ment only for sleep and hibernate power mode wakeup
sources. Alternate active mode wakeup sources can have
their interrupt signals either passing directly to the interrupt
controller, or through the edge detect logic.

Follow these steps before switching off the Interrupt Control-
ler clock.

1. Clear all pending interrupts and disable all interrupts in
Interrupt Controller.

2. NOP.
3. Disable the Global Interrupt bit.

4. Turn OFF the clock for Interrupt Controller in the
CLOCK_EN bit in the INTC.CLOCK_EN register.

It is preferred not to operate any Interrupt related functions
when the clock to the interrupt controller is not available.
When an Interrupt Service routine is executed by the CPU
when the clock to the interrupt controller is switched off, the
CPU should make sure the clock for the Interrupt Controller
is re-enabled before the exit from the ISR (to process the
IRC signal). If this is not taken care, it will lead to undefined
behavior.

When returning from the lower power mode or wants to con-
tinue in the alternate active mode, follow these steps:

1. Clock must be available to Interrupt Controller
2. Enable the Global interrupt bit
3. Enable the required interrupts in the Interrupt Controller

The CPU can run when the interrupt controller clock is
switched off only during active and alternate active modes.
When the user wants to switch from alternate active to
Active mode when the Interrupt controller clock is switched
off.
a. Follow the steps mentioned above to switch off the
clock for the Interrupt controller
b. Now the CPU can run any code that doesn't involve
the Interrupt functionality.
c. Switch to the active state whenever required
d. To switch to active mode only on wake up on inter-
rupt, then the CPU should keep polling the

PM.MODE_CSR register to find when the system
should switch to active mode.

e. When switching back to active mode, follow the pro-
cedures mentioned above for switching from low-
power mode to active mode.
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The PSoC® nonvolatile subsystem consists of flash, byte-writable EEPROM, and nonvolatile configuration options. The CPU
can reprogram individual blocks of flash, enabling boot loaders. An Error Correcting Code (ECC) can enable high reliability
applications.

A powerful and flexible protection model allows the user to selectively lock blocks of memory for read and write protection,
securing sensitive information. The byte-writable EEPROM is available on-chip for the storage of application data. Addition-
ally, selected configuration options, such as boot speed and pin drive mode, are stored in honvolatile memory, allowing set-
tings to become active immediately after power on reset (POR).

This section encompasses the following chapters:

Nonvolatile Latch chapter on page 85

SRAM chapter on page 89

Flash Program Memory chapter on page 93

EEPROM chapter on page 95

EMIF chapter on page 97

Memory Map chapter on page 105

Cache chapter on page 147

Top Level Architecture

(Block diagram here taken from main block diagram in Introduction.)

Memory Block Diagram

f System Bus m—

MEMORY SYSTEM

EEPROM SRAM [ >

CPU
SYSTEM

EMIF FLASH
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A Nonvolatile Latch (NVL or NV latch) is an array of programmable, nonvolatile memory elements whose outputs are stable at
low voltage. It is used to configure the device at Power on Reset. Each bit in the array consists of a volatile latch paired with a
nonvolatile cell. On POR release nonvolatile cell outputs are loaded to volatile latches and the volatile latch drives the output
of the NVL.

8.1 Features

NV latches include:
m A 4x8-bit NV latch for device configuration
m A 4x8-bit Write Once NV latch for device security

8.2 Device Configuration NV Latch

Device configuration NV latches allow configuration of PSoC® device parts before the CPU reset is released. For example,
the user may configure each 1/O port to be in one of four drive modes before CPU reset is released. Device configuration NV
latch values have lower endurance and must be written in a narrower temperature window. Programming temperature range
and endurance are traded off to meet the low voltage and wide temperature requirements. For endurance, retention, and tem-
perature specs for NV latches see the specific device datasheet. The Device Configuration NV Latch register map is shown in
Table 8-1.

Table 8-1. Device Configuration Register Map

igg'rit:sr 7 6 5 4 3 2 1 0
0x00 PRT3RDM[1:0] PRT2RDM[1:0] PRT1RDM[L:0] PRTORDMI[L:0]
0x01 PRT12RDM[1:0] PRT6RDM[L:0] PRT5RDM[L:0] PRT4RDM[1:0]
0x02 XRESMEN | DEBUG_EN Reserved PRT15RDM[L:0]
0x03 DIG_PHS_DLY[3:0] ECCEN [ DPSI[1:0] | cFGSPEED

8.21  PRTXRDM[1:0]

Port Reset Drive mode NVL bits enable selection of one of four drive modes to be in effect between the release of POR and
the configuration of the device by user firmware. These four drive modes are a subset of the drive modes available by writing
to the port drive mode registers. See the 1/0 System chapter on page 151 for more details. The following is a summary of the
four NVL drive mode settings:

00b — High impedance analog
m 01b - High impedance digital
m 10b - Resistive pull up

m 11b — Resistive pull down
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8.2.2 XRESMEN

GPIO pin (P1[2]) may be configured as an external reset
(XRES) pin. The configuration of that pin is controlled with
this NVL bit:

m 0-GPIO
m 1-XRES
8.23  DEBUG_EN

The Debug Enable bit allows access to the on-chip debug-

ger and allows programming, either in JTAG or SWD mode,

without having to acquire the device in test mode. JTAG or

SWD can be selected by the Debug Port Select (DPS) bits.

When DEBUG_EN is not set, it is required to enter test

mode to gain debugger access and enable device program-

ming.

m 0 - Debug Disabled (no debugger access except after
test acquire)

m 1 - Debug Enabled (debugger access with or without
test acquire)

8.2.4 CFGSPEED

The Configuration Speed NVL bit determines if the IMO
defaults to a fast or slow speed. See the Clocking
System chapter on page 109 for more details. This configu-
ration is intended to balance the need for rapid boot and
configuration against peak power consumption.

m 0 - Slow (12 MHz IMO frequency)
m 1 - Fast (48 MHz IMO frequency)

8.2.5  DPS[1:0]

Debug Port Select NVL bits allow the user to select a
debugging port interface that is active after POR is released.
If the debug port’s disabled setting is used, the acquire func-
tions of the test controller must be used to activate the
debug port. See the Test Controller chapter on page 403 for
more details. These NVL bits do not enable the debugger
logic; they enable only the physical interface. The only way
to enable the debug logic is for the user's firmware or config-
uration to write the debugger enable bit.

m  00b — 5-wire JTAG

m 01b - 4-wire JTAG

m 10b — SWD (single wire debug)

m 11b — Debug ports disabled

For programming and debugging using third-party tools, the
Debug Port Select should be configured for either the SWD
or JTAG settings as applicable. Do not select the ‘Debug

ports disabled’ setting while programming or debugging
using the third-party tools.
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8.2.6 ECCEN

For devices that support an Error Correcting Code (ECC) in
the flash, this NVL bit is used to set whether ECC is
enabled. See the Flash Program Memory chapter on
page 93 for more details.

m 0 - ECC disabled
m 1 - ECC enabled

8.2.7  DIG_PHS DLY[3:0]

This bit selects the digital clock phase delay in 1 ns incre-
ments. See the Clocking System chapter on page 109 for
more details,

0x00 — Clock disabled
0x01 — 2.5 ns delay
0x02 — 3.5 ns delay

0XO0A — 11.5 ns delay
0x0B — 12.5 ns delay
0x0C - Clock disabled
0XO0D - Clock disabled
O0XOE — Clock disabled
0XOF — Clock disabled

8.3 Write Once NV Latch

The Write Once (WO) latch is a type of nonvolatile latch.
The cell itself is an NVL with additional logic wrapped
around it. Each WO latch device contains 4 bytes (32 bits) of
data. The wrapper outputs a 1 if a super-majority (28 of 32)
of its bits match a pre-determined pattern (0x50536F43) and
it outputs a 0 if this majority is not reached. When the output
is 1, the Write Once NV latch locks the part out of Debug
and Test modes; it also permanently gates off the ability to
erase or alter the contents of the latch. Matching of all bits is
intentionally not required, so that single (or few) bit failures
do not deassert the WO latch output. The state of the NV
latch bits after wafer processing is truly random with no ten-
dency toward 1 or 0.

The WOL only locks the part when the correct 32-bit key
(0x50536F43) is loaded into the NVL's volatile memory, pro-
grammed into the NVL's nonvolatile cells, and the part is
reset. The output of the WOL is only sampled on reset and
used to disable the access.
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This precaution prevents anyone from reading, erasing, or
altering the content of the internal memory.

If the device is protected with a WO

& latch setting, Cypress cannot perform
failure analysis and, therefore, cannot
accept RMAs from customers. The WO
latch can be read via the SWD to electri-
cally identify protected parts.

The user can write the key in WOL to lock out external
access only if no flash protection is set. However, after set-
ting the values in the WOL, a user still has access to the part
until it is reset. Therefore a user can write the key into the
WOL, program the flash protection data, and then reset the
part to lock it. See the Flash, Configuration
Protection chapter on page 167 for details on flash protec-
tion.

8.4

The volatile latch is intended to be initialized from a nonvola-
tile memory cell at POR release. NV Latches are configured
by writing to the volatile cells of the array and then program-
ming the volatile cell data into the nonvolatile cells (Write
Nonvolatile Cell Mode). See the Nonvolatile Memory
Programming chapter on page 423 for more details on NV
latch programming sequence.

Programming NV Latch

NVL programming is done through a simple command/sta-
tus register interface. Commands and data are sent as a
series of bytes to either SPC_CPU_DATA or
SPC_DMA_DATA, depending on the source of the com-
mand. Response data is read via the same register to which
the command was sent. The following commands are used
to program NVLs:

m Command 0x00 — Load Byte

Loads a single byte of data into the volatile cells at the
given address.

m Command 0x10 — Read Byte
Reads a single byte of data from volatile cells at the
given address.

m  Command 0x06 — Write User NVL
Writes all nonvolatile cells in a User NVL with the corre-
sponding values in its volatile latches.

m  Command 0x03 — Read User NVL
Reads a single byte of data from nonvolatile cells at the
given address. Note that when this command is exe-

cuted, all of the bytes are transferred from nonvolatile
cells to the volatile cells of the array.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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8.5

NV latches remain powered up during sleep, but they stay in
an idle state, not allowing any direct reads or writes. During
sleep, the outputs of the NVLs remain stable.

Sleep Mode Behavior
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PSoC® 5LP devices include on-chip SRAM.

9.1 Features

PSoC 5LP SRAM has these features:

Organized as up to 16 blocks of 4 KB each, for CY8C55 family.

Code can be executed out of portions of SRAM, for CY8C55 family.

8-, 16-, or 32-bit accesses.

Zero wait state accesses.

Arbitration of SRAM accesses by the CPU and the DMA controller.

Different blocks can be accessed simultaneously by the CPU and the DMA controller.

9.2 Block Diagram
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Figure 9-1 shows CY8C55 family SRAM accesses.
Figure 9-1. CY8C55 Family SRAM Accesses

Cortex-M3
CPU

A

32

PHUB

L]

Peripheral | ® ® ® | Peripheral

A
4

SRAM

Figure 9-2 shows internal SRAM organization for the CY8C55 family.
Figure 9-2. CY8C55 Family SRAM Organization

SRAM
Cortex-M3 |
CPU <——p CPUIF <
et ®
PHUB |[««——F—» PHUBIF < °
SRAM BANKO
(32 KB)
4——> Lower SRAM
SRAM BANK1
(32 KB)
—> Upper SRAM
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9.3 How It Works

The CY8C55 family has up to 64 KB SRAM implemented as
sixteen 4 KB blocks. All 64 KB are accessible by the Cortex-
M3 CPU and by the PHUB DMA controller in normal opera-
tion. The SRAM is further organized as two 32 KB memory
banks, centered at address 0x20000000. This allows
access to both SRAM banks with either the c-Bus (Cortex-
M3 | and D buses) or the s-Bus (Cortex-M3 system bus).
Code can be executed from all SRAM below address
0x20000000.

The PHUB can use SRAM as a DMA source or target.
All data paths to SRAM are 32 bits wide.

The CPU has a direct connection to SRAM without going
through the PHUB. In addition to faster SRAM access by the
CPU, this allows for simultaneous accesses to SRAM by
both the CPU and the PHUB DMA controller, because
SRAM is physically implemented as multiple separate
blocks. If the CPU and the PHUB are accessing separate
blocks, they both have simultaneous unimpeded access.

In case of contention, the following applies:

m  CY8CS55 family — In most cases, the Cortex-M3 CPU has
priority over the PHUB for all SRAM.

The SRAM responds to CPU and PHUB accesses with zero
wait states for both reads and writes as long as the access
does not lose priority arbitration. Arbitration is done on a
cycle-by-cycle basis at the time of SRAM access. The losing
master is held off until the winning master has finished
accessing the SRAM block; the losing master gains access
on the cycle immediately after.

SRAM data is maintained during all low-power and sleep
modes. At reset, the SRAM contents are not initialized; they
power up as unknown values.
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PSoC® 5LP include on-chip flash memory. Additional flash is available for either error correction bytes or data storage.

10.1 Features

PSoC 5LP flash memory has the following features:

m Organized in rows, where each row contains 256 data bytes plus 32 bytes for either error correcting codes (ECC) or data
storage.

m  For PSoC 5LP architecture: CY8C55 Family, organized as either one block of 128 or 256 rows, or as multiple blocks of
256 rows each.

Stores CPU program and bulk or nonvolatile data
For PSoC 5LP architecture: CY8C55 Family, 8-, 16-, or 32-bit read accesses.

Programmable with a simple command / status register interface (see Nonvolatile Memory Programming chapter on
page 423).

m  Four levels of protection (see Nonvolatile Memory Programming chapter on page 423 and Flash, Configuration
Protection chapter on page 167).

10.2 Block Diagram

Figure 10-1 is a block diagram of the flash programming system.

Figure 10-1. Flash Block Diagram

Test Controller (TC)

Debug on-Chip (DOC) > CPU e— Flash

PHUB Programming
Interface
EEPROM = NVL
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10.3 How It Works

Flash memory provides nonvolatile storage for firmware,
device configuration data, bulk data storage, ECC data, fac-
tory configuration data, and protection information.

Flash memory contains two regions — a main region, and a
much smaller, extended region. All user data is stored in the
main region, including ECC data. Factory configuration and
user-defined protection data are stored in the extended
region, also known as the hidden rows of flash.

For each row, protection bits control whether the flash can
be read or written by external debug devices and whether it
can be reprogrammed by a boot loader. For more informa-
tion see the Nonvolatile Memory Programming chapter on
page 423 and Flash, Configuration Protection chapter on
page 167.

Flash can be read by both the CPU and the DMA controller.

Flash is erased in 64-row sectors or in its entirety, and it is
programmed in rows. Erase and programming operations
are done by a programming system, using a simple com-
mand/status register interface. For more information see the
Nonvolatile Memory Programming chapter on page 423.

Note It can take as much as 20 milliseconds to write to
EEPROM or flash. During this time the device should not be
reset; otherwise, unexpected changes may be made to por-
tions of EEPROM or flash. The reset sources (see Reset
Sources on page 143) include XRES pin, software reset,
and watchdog; make sure that these are not inadvertently
activated. Also, configure the low-voltage detect circuits to
generate an interrupt instead of a reset.

Note When writing FLASH on PSoC 5LP devices, it is pos-
sible for data in the instruction cache to become stale, thus
the cache data does not correlate to the data just written to
FLASH. A call to CyFlushCache() is required to invalidate
the data in cache and force fresh information to be loaded
from FLASH.

10.4 Flash Memory Access

Arbitration

Flash memory can be accessed either by the cache control-
ler or the nonvolatile memory programming interface (sys-
tem performance controller (SPC)). Cache controller can
perform only flash read operations while the SPC can per-
form both read and write operations on the flash memory.
There is an internal arbitration mechanism to facilitate flash
memory access by both the cache and the SPC. Flash
memory is organized as flash arrays. PSoC 5LP can have
up to four flash arrays, where each flash array size can be
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up to 64 KB. The SPC and the cache controller cannot
simultaneously access the flash memory locations. If the
cache controller tries to access the flash at the same time as
the SPC, then it must wait until the SPC completes its flash
access operation. The CPU, which accesses the flash mem-
ory through the cache controller, is also halted until the
cache is filled with the code to be executed from the flash
memory. Similarly, if SPC tries to access the flash array at
the same time as the cache controller, then it must wait until
the cache controller completes its access operation.

ECC Error Detection and
Interrupts

10.5

The ECC detects conditions that may interfere with software
operation. The information is logged into individual interrupt
registers that become latched until the software clears the
corresponding valid bit. All interrupt sources within the ECC
are passed through a mask condition; then, they are
reduced into a single interrupt request to the Interrupt Con-
troller unit.

When the software is notified about an existing interrupt in

the ECC, the following sequence occurs:

1. The software reads the Interrupt Status register
CACHE_INT_SR that provides the valid bits of all inter-
rupts in a single read operation.

2. The software examines individual interrupt registers for
more log information (CACHE_INT_LOG[0..5]).

3. Stored log information is cleared on read of registers.

4. After clearing of log information, the status register
(CACHE_INT_SR) is automatically cleared, because itis
a collection of valid bits of the log registers.

Logging is always enabled; reporting may be disabled
through the Interrupt Mask Register (CACHE_INT_MSK).

The following conditions are detected by the hardware and
logged as potential interrupt sources:

m ECC - Single Bit — A single bit error was encountered
during a fill operation and was fixed.

m ECC — Multi Bit — A multi-bit error was encountered dur-
ing a fill operation, but it cannot be corrected.

m  Attempted Flash Write — If a write to flash through the
PHUB is attempted.
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PSoC® 5LP devices have on-chip EEPROM memory. This family offers devices that range from 512 bytes to 2 kilobytes.

11.1 Features

PSoC 5LP EEPROM memory has the following features:

Organized in rows, where each row contains 16 bytes

Organized as one block of 32, 64, or 128 rows, depending on the device
Stores nonvolatile data

Write and erase using SPC commands

Byte read access by CPU or DMA using the PHUB

Programmable with a simple command/status register interface (see Nonvolatile Memory Programming chapter on
page 423)

11.2 Block Diagram

There is no block diagram associated with EEPROM.
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11.3 How It Works

EEPROM memory provides nonvolatile storage for user data. EEPROM write and erase operation is done using SPC com-
mands. It may be read by both the CPU and the DMA controller, using the PHUB. All read accesses are 8-bit.

If a PHUB access is attempted while the SPC is in control of EEPROM, a System Fault Interrupt is generated to the interrupt
controller and the bit EEPROM_error is set in SPC_EE_ERRJ[0]. When set, this bit remains set until it is read from the PHUB.
EEPROM can be taken in and out of sleep mode by setting the bit EE_SLEEP_REQ in SPC_FM_EE_CR[4], as shown in
Table 11-1. Before a PHUB access of EEPROM is done, set the firmware EEPROM request bit AHB_EE _REQ in
SPC_EE_SCR][0], then poll for the EEPROM acknowledge bit EE_AHB_ACK in SPC_EE_SCRJ[1] to be set. Before a PHUB
access of EEPROM is done, firmware should set the EEPROM request bit AHB_EE_REQ in SPC_EE_SCR[0], then poll for
the EEPROM acknowledge bit EE_AHB_ACK in SPC_EE_SCR[1] to be set.

It is also possible to check the current sleep status of the EEPROM by reading the bit EE_AWAKE in SPC_FM_EE_CRJ[5], as
shown in Table 11-2.

Table 11-1. Bit Settings for EE_SLEEP_REQ in SPC_FM_EE_CRJ[4]

Setting Description
0 (default) Wake up EEPROM
1 Put EEPROM to sleep

Table 11-2. Bit Settings for EE_AWAKE in SPC_FM_EE_CRJ[5]

Setting Description
0 EEPROM is asleep
1 (default) EEPROM is awake

EEPROM is erased in 64-row sectors, or in its entirety, and is programmed in rows. Erase, programming and read operations
are done by a programming system using a simple command/status register interface. For more information see Nonvolatile
Memory Programming chapter on page 423. Contention priority between the cache controller and the programming system
can be controlled by the bit EE_Priority, in SPC.FM_EE_CRJ1], as shown in Table 11-3.

Table 11-3. Bit Settings for EE_Priority, in SPC.FM_EE_CR[1]

Setting Description

0 (default) PHUB has priority

1 Programming system has priority

Note It can take as much as 20 milliseconds to write to EEPROM or flash. During this time the device should not be reset;
otherwise, unexpected changes may be made to portions of EEPROM or flash. The reset sources (see Reset Sources on
page 143) include XRES pin, software reset, and watchdog; make sure that these are not inadvertently activated. Also, con-
figure the low-voltage detect circuits to generate an interrupt instead of a reset.
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PSoC® 5LP architecture provide an external memory interface (EMIF) for connecting to external memory devices and periph-
eral devices. The connection allows read and write access to the devices. The EMIF operates in conjunction with UDBs, 1/10
ports, and other PSoC 5LP components to generate the necessary address, data, and control signals.

The EMIF does not intercept address data between the PHUB and the 1/O ports. It only generates the required control signals
to latch the address and data at the ports. The EMIF generates a clock to run external synchronous and asynchronous mem-
ories. It can generate four different clock frequencies, which are the bus clock divided by 1, 2, 3, or 4.

12.1 Features

The EMIF supports four types of external memory: synchronous SRAM, asynchronous SRAM, cellular RAM/PSRAM, and
NOR flash. External memory can be accessed via the ARM Cortex-M3 external RAM space; up to 24 address bits can be
used. The memory can be 8 or 16 bits wide.

12.2 Block Diagram

Figure 12-1 is the EMIF block diagram.
Figure 12-1. EMIF Block Diagram
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12.3 How It Works

The address component of the EMIF uses up to three 1/O
ports. The I/O ports used for external memory address are
selected by configuring the 3-bit portEmifCfg field in the
PRT*_CTL register. The register can be configured so that
the port is selected as either the most significant byte, the
middle byte, or the least significant byte of the address. (See
the 1/0 System chapter on page 151 for details of the
PRT*_CTL register.)

The data component of the EMIF uses one or two 1/O ports.
The I/O port or ports used for external memory data are
selected by configuring the 3-bit portEmifCfg field in the
PRT*_CTL register. The register can be configured so that
the port is selected as either the most significant byte or the
least significant byte of the data. (See the /O
System chapter on page 151 for details of the PRT*_CTL
register.)

The control component of the EMIF uses a single /O port.
The 1/O port used for external memory control is selected by
configuring the 3-bit portEmifCfg field in the PRT*_CTL reg-
ister. The 1/0 port must be further configured by setting the
byPass bit in the PRT*_BYP register. This allows the EMIF
to drive the pins. The control signals are sent from the EMIF
to the I/O port over the digital signal interface (DSI).

12.3.1  List of EMIF Registers
This table lists EMIF registers.

Table 12-1. EMIF Registers

Register Usage
Controls whether a synchronous or asynchro-
EMIFE_NO_UDB nous RAM is supported, versus a custom

memory interface requiring additional UDB
logic.

Number of additional wait states used in a

EMIF_RP_WAIT_STATES read operation.

Puts the external memory into a power down

EMIF_MEM_DWN
- - state.

Sets the clock divider for the external memory
clock frequency, which can equal the bus
clock frequency divided by 1, 2, 3 or 4. Note
that the external memory clock frequency can-
not exceed 33 MHz.

EMIF_MEMCLK_DIV

Enables/disables the clock for the EMIF block,

EMIF_CLOCK_EN effectively turning the block on or off.

Controls whether to generate control signals
for a synchronous or asynchronous SRAM in
NO_UDB mode.

EMIF_EM_TYPE

Number of additional wait states used in a

EMIF_WP_WAIT_STATES ; :
- - - write operation.
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12.3.2

Table 12-2 on page 101 shows how different external mem-
ory types can be connected to the PSoC 5LP devices.
Address lines use up to three I/O ports. Data lines use one
or two ports, depending on whether the external memory is
x8 or x16. Control lines use 3 to 6 pins on one |/O port.
Spare pins on the address and data ports are not available
for any other purpose. Spare pins on the control port are
available for other purposes.

External Memory Support
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Figure 12-2. Synchronous SRAM
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Figure 12-3. Asynchronous SRAM
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Table 12-2. External Memory Connections to PSoC 5LP Devices

EMIF

PEHE P CommEsien Sygfzh Srsea Assér;?rggggligfigAM Ex: E??’fs%.f??&"coa Ex: m(t)e'lqzlzslgssgom
31/0 PORTs A0 - Al6 A0 - A17 A0 - A7 A0 - A18
2 1/0 PORTs DO - D15 DO - D15 DO - D15 DO - D15
11/0 PORT pin: EM_CE CE1 CE CE CE
11/0 PORT pin: EM_OE OE OE OE OE
1 1/0 PORT pin: EM_WE GW WE WE WE
1 1/0 PORT pin: EM_ADSC ADSC
1 1/0 PORT pin: EM_CLOCK CLK
1 1/0 PORT pin: EM_SLEEP zz RP
tie high ADSP WP
tie high ADV
tie high CE2
tie high BWE
tie low CE3
tie low BWA BHE BHE
tie low BWB BLE BLE
tie low MODE

a. RP is opposite polarity from the ZZ signal on the synchronous SRAM. Either add an inverter to the EM_SLEEP signal or program the EMIF_MEM_DOWN
register with the opposite polarity.

12.3.3

Sleep Mode Behavior

All EMIF registers keep their value during sleep mode. The
MEM_DWN register controls external memory sleep mode;
the external control signal ZZ is asserted or deasserted. If
an external memory access happens when MEM_DWN is
set, ZZ is not asserted until after the current transfer is com-
pleted. ZZ is deasserted when the MEM_DWN register is
cleared; it then takes two external memory clock cycles for

the memory to wake up.

To completely turn off the EMIF block, clear the CLOCK_EN

register.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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12.4 EMIF Timing

The EMIF is clocked by bus clock — the same signal that
clocks the CPU and the PHUB. Within the EMIF block, the
bus clock can be divided by 1, 2, 3, or 4; the output is the
EM_CLOCK signal to the external memory IC.

The following table shows the number of PHUB wait states
generated by the EMIF depending on how much the input
clock is divided.

Table 12-3. PHUB Wait States Generated by EMIF

EM_CLOCK =
Bus Clock Divided By

Read Wait States Write Wait States

2
4
6
8

N | |jw |-

1
2
3
4

The EMIF.WAIT_STATES register can also be used to add
up to seven more wait states.
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An important limitation is that the maximum 1/O rate of
PSoC 5LP GPIO pins is 33 MHz. This makes the maximum
frequency of EM_CLOCK 33 MHz. The following table
shows limitations of EM_CLOCK frequency relative to the
bus clock:

Table 12-4. Limitations of EM_CLOCK Relative to Bus

Clock
Bus Clock Frequency EM_CLOCK = Bus Clock Divided By
< 33 MHz 1,2,3,0r4
33-66 MHz 2,3,0r4
> 66 MHz 3ord

The maximum frequency of the bus clock is 80 MHz for
PSoC 5LP devices. In most cases, EMIF_MEMCLK_DIV
must be used to divide EM_CLOCK to a frequency less than
or equal to 33 MHz.

Given the above restriction on EM_CLOCK frequency, and
the relation of EM_CLOCK to EM_ADSC-, EM_CE-, and
EM_WE-, it can be seen that the minimum pulse widths of
these signals is 30.3 ns.

Figure 12-4. Synchronous Write Cycle Timing
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Figure 12-5. Synchronous Read Cycle Timing
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12.5 Using EMIF with Memory-

Mapped Peripherals

The EMIF can also be used with external peripheral devices
that have a bus interface similar to asynchronous memory
devices, that is, they address, data, CE-, WE-, and OE-. The
speed of the interface must be considered in the same man-
ner as described above. The maximum data bus size is 16
bits, and the minimum address bus size is 8 bits. If multiple
external memory and peripheral devices are used, address
decoding to the multiple device selects may become com-
plex and must be given careful consideration.

12.6 Additional Configuration

Guidelines

The PHUB assumes all peripherals including external mem-
ory are byte addressable. Port logic is natively 16 bits wide,
so care must be taken when setting up communication with
either an 8 or 16 bit external memory. The following section
describes some guidelines to configure the port pins and set
up the memory access methods (either CPU or DMA) for
optimal performance.

12.6.1

Configure three of the available ports as output EMIF
address ports. Because PHUB peripherals are byte
addressable regardless of the external memory data bus
size, up to 2724 bytes of external memory can be accessed.
If an 8-bit memory is used, up to 24-bit address lines can be
directly connected to the memory. If a 16-bit memory is
used, the LSB address line (A0) of the memory chip should
be connected to the second address line (A1) of the PSoC
and the LSB address line (AO) of the PSoC should be
ignored. This is because the PHUB increments the address
by 2 while doing 16-bit transactions.

Address Bus Configuration

12.6.2

For 16 bit memories, two ports should be configured as bidi-
rectional EMIF data ports. For 8bit memories, only one port
should be configured as a bidirectional EMIF data port.

Data Bus Configuration

12.6.3

DMA Transfers: For DMA transfers to/from 16bit external
memory, odd burst counts are not supported because 8 bit
transfers are not supported on a 16bit interface.

16-bit Memory Transfers

CPU Transfers: With the 32 bit ARM M3 processor in
PSoC 5LP, 16-bit memory can be directly accessed by the
CPU. The only limitation here is the PSoC 5LP cannot initi-
ate 8 bit transfers to 16-bit memories and should not initiate
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unaligned 16-bit or 32-bit transfers to an external memory,
as the processor may convert these into multiple 8 bit
aligned accesses. However, 32 or 16-bit aligned transfers
are handled correctly by the processor and PHUB.

12.6.4

DMA Transfers: For DMA transfers to/from an 8 bit external
memory, the burst count should always be 1, irrespective of
the transfer count. For example, if the burst count is set as 2
to transfer two bytes to external memory, the PHUB will try
to do a 16-bit transfer in a single burst instead of breaking
the transfer down into two individual transfers with the 8-bit
memory.

8-bit Memory Transfers
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All PSoC® 5LP memory (flash, EEPROM, Nonvolatile Latch, and SRAM) and all registers are accessible by the CPU, DMA
controller, and in most cases by the debug systems. This chapter contains an overall map of the addresses of the memories
and registers.

13.1 Features

The PSoC 5LP memory map has the following features:

m  ARM Cortex-M3 32-bit linear address space, with regions for code, SRAM, peripherals, external RAM, and CPU internal
registers.

Flash is mapped to the Cortex-M3 code region.

Half of SRAM is mapped to the code region, the other half to the SRAM bitband region.
SRAM mapped to the code region is also accessible by DMA in the SRAM bitband region.
External memory (see the EMIF chapter on page 97) is mapped to the external RAM region.

All other memories, and all registers, are accessed in the Cortex-M3 peripheral bitband region.

13.2 Block Diagram

There is no block diagram associated with the memory map.

13.3 How It Works

The PSoC 5LP memory maps are detailed in the following sections. For additional information see the PSoC® 5LP Registers
TRM (Technical Reference Manual).
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13.3.1  PSoC 5LP Memory Map

The ARM Cortex-M3 has a fixed address map allowing access to peripherals using simple memory access instructions. The
32-bit (4 GB) address space is divided into the regions shown in Table 13-1. Note that code can be executed from the code,
SRAM, and external RAM regions.

Table 13-1. PSoC 5LP Memory Map

Address Range Size Use

0x00000000 — OX1FFFFFFF 0.5GB Program code. Includes the exception vector table at power up, which starts at address 0

_ SRAM. This includes a 1 MByte bit-band region starting at 0x20000000, and a 32 Mbyte bit-band alias
0x20000000 — 0x3FFFFFFF 0.5GB region starting at 0x22000000.
0x40000000 — OXSFEEFEFEF 0.5 GB Pe_ariphergls. This_ includes a 1 MByte bit-band region starting at 0x40000000, and a 32 Mbyte bit-band

alias region starting at 0x42000000.

0x60000000 — OX9FFFFFFF 1GB External RAM
0xA0000000 — OXDFFFFFFF 1GB External peripherals
0xE0000000 — OXFFFFFFFF 0.5GB Internal peripherals, including the NVIC and debug and trace modules

The PSoC 5LP address map is shown in Table 13-2. For more information see the Cortex-M3 chapter.

Table 13-2. PSoC 5LP Address Map

Address Range Purpose
0x0000 0000 — 0x0003 FFFF Up to 256 KB Flash
O0x1FFF 8000 — Ox1FFF FFFF Up to 32 KB SRAM in code region
0x2000 0000 — 0x2000 7FFF Up to 32 KB SRAM in SRAM region
0x2000 8000 — 0x2000 FFFF Alias of address range Ox1FFF 8000 — Ox1FFF FFFF, accessible by DMA
0x4000 4000 — 0x4000 42FF Clocking, PLLs, and oscillators
0x4000 4300 — 0x4000 43FF Power management
0x4000 4500 — 0x4000 45FF Ports interrupt control
0x4000 4700 — 0x4000 47FF Flash programming interface
0x4000 4900 — 0x4000 49FF 12C controller
0x4000 4E00 — 0x4000 4EFF Decimator
0x4000 4F00 — 0x4000 4FFF Fixed timer/counter/PWMs
0x4000 5000 — 0x4000 51FF General purpose I1/0s
0x4000 5300 — 0x4000 530F Output port select register
0x4000 5400 — 0x4000 54FF External memory interface control registers
0x4000 5800 — 0x4000 5FFF Analog subsystem interface
0x4000 6000 — 0x4000 60FF USB controller
0x4000 6400 — 0x4000 6FFF UDB configuration
0x4000 7000 — 0x4000 7FFF PHUB configuration
0x4000 8000 — 0x4000 87FF EEPROM
0x4000 A000 — 0x4000 A400 CAN
0x4000 C000 — 0x4000 C800 Digital filter block
0x4001 0000 — 0x4001 FFFF Digital interconnect configuration
0x4800 0000 — 0x4800 7FFF Flash ECC bytes
0x6000 0000 — 0X60FF FFFF External Memory Interface (EMIF)
0xE000 0000 — OXEOOF FFFF Cortex-M3 PPB registers, including NVIC, debug, and trace
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The System Wide Resources section details three types of I/O, internal clock generators, power supply, boost converter, and
sleep modes.

This section contains these chapters:

Clocking System chapter on page 109

Power Supply and Monitoring chapter on page 125

Low-Power Modes chapter on page 135

Watchdog Timer chapter on page 141

Reset chapter on page 143

Auxiliary ADC chapter on page 179

I/O System chapter on page 151

Flash, Configuration Protection chapter on page 167

Top Level Architecture

System Wide Resources Block Diagram

SYSTEM WIDE RESOURCES ‘
Xtal
Osc ) e} ~(<n
] RTC WoT &
2 T — and +—P ILO @
p imer Wake 3
@ o8}
® c
IMO »
Clocking System
¢
POR and Sleep
LVD Power 1.8V LDO SMP
Power Management System
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The clocking system provides clocks for the entire device. It allows the user to trade off current, frequency, and accuracy. A
wide range of frequencies can be generated, using multiple sources of clock inputs combined with the ability to set divide val-
ues.

14.1 Features

The clock system includes these clock resources:
m Four internal clock sources increase system integration:
0 3to 74.7 MHz internal main oscillator (IMO) +1% at 3 MHz
a1 kHz, 33 kHz, 100 kHz internal low-speed oscillator (ILO) outputs

o 48 MHz clock doubler output for USB, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and Digital Sys-
tem Interconnect (DSI)

0 24 to 80 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI
Clock generated using a DSI signal from an external 1/0 pin or other logic

Two external clock sources provide high precision clocks:

o 4 to 25 MHz External Crystal Oscillator (MHzECO)

0 32.768 kHz External Crystal Oscillator (kHzECO) for real-time clock (RTC)

Dedicated 16-bit divider for bus clock

Eight individually sourced 16-bit clock dividers for the digital system peripherals

Four individually sourced 16-bit clock dividers with skew for the analog system peripherals

IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB. (USB equipped parts
only)
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Figure 14-1 gives a generic view of the Clocking System in PSoC 5LP devices.

Figure 14-1. Clocking System Block
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The components of the clocking system block diagram are
defined as follows:

m Internal main oscillator (IMO)

Internal Low-speed Oscillator (ILO)

A 4 to 25 MHz External Crystal Oscillator (MHzECO)
A 32 kHz External Crystal Oscillator (kHzECO)

Digital System Interconnect (DSI) signal, which can be
derived from the clocks developed in UDBs or off-chip
clocks routed through pins

m A PLL to boost the clock frequency of some select inter-
nal and external sources

m  Five types of clock outputs:
o Digital clocks

o Analog clocks
o Special purpose clocks
o System clock
a USB clock
14.3 Clock Sources

Clock sources for the device are classified as internal oscil-
lators and external crystal oscillators. There is an option of
using a PLL or a frequency doubler to derive higher fre-

110

guency outputs from existing clocks. Signals can be routed
from the DSI and used as clocks in the clock trees.

14.3.1

PSoC devices have two internal oscillators: the internal
main oscillator (IMO) and the internal low-speed oscillator
(ILO).

Internal Oscillators

14311

The IMO operates with no external components and outputs
a stable clock, clk_imo, at a variety of user-selectable fre-
qguencies: 3, 6, 12, 24, 48, 62.6, and 74.7 MHz. Frequencies
are selected using the register FASTCLK_IMO_CRJ[2:0].
The clock accuracy is 1% typical at 3 MHz and it varies with
frequency. See the device datasheet for IMO accuracy spec-
ification.

Internal Main Oscillator

Clock Doubler

The block has one additional clock output. A doubled clock,
IMOCLKX2 outputs a clock at twice the frequency of the
input clock. The doubler is enabled by register bit
FASTCLK_IMO_CR[4]. The doubler can also take clock
inputs (XCLK) other than IMO and have a DSI or MHzZECO
as input. This feature is enabled by the bit
FASTCLK_IMO_CR[5]. The DSI / MHzECO can be selected
in the CLKDIST_CR][6] register bit.
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The clock distribution register CLKDIST_CR[5:4] is respon-
sible for selecting between IMO or IMO x 2 outputs.

Figure 14-2 is a summary block diagram of the IMO.
Note The output of the clock doubler should only be used
for clocking the USB block. It should not be used to clock
any other peripherals in the device.

Fast-Start IMO (FIMO)

An alternate mode of the IMO is available for fast start-up
out of sleep modes. This fast-start IMO (FIMO) mode pro-
vides a clock output within 1 pys after exiting the power down
state. The fast-start IMO uses a special fast bias circuit that
is stable more quickly than the high accuracy bias that is
used during normal operation. This fast bias is less accurate
than the normal bias, resulting in a less accurate clock fre-
qguency. The normal, high-accuracy bias is always used
when running user code.

During the transition from FIMO to regular IMO, glitches can
occur if the frequency selection for the two configurations

Clocking System

are not the same. Stated explicitly, at the transition,
FASTCLK_IMO_CR[2:0] should match
PWRSYS_WAKE_TR1[2:0].

NVL Frequency Selection

Upon entering the boot phase of startup, the IMO frequency
and a portion of its trim are set using values stored in user
NVLs. This allows the user to select a faster clock frequency
for a portion of device startup. The top two bits of IMO trim
stored in the IMO_TR2 register are populated from the NVL
register MNVL_FIMO_TRIM[1:0]. The frequency selection
bits in register FASTCLK_IMO_CRJ[2:0] have their most sig-
nificant bit populated using NVL register
CNVL_CFGSPEED. The NVL register will set the frequency
to 12 MHz when set to 0, and 48 MHz when set to 1. This
NVL selection will be overwritten during firmware startup
with a more complete frequency selection and trim.

Note 48-MHz startup should not be selected in devices with
a maximum operating frequency rating below 48 MHz.

Figure 14-2. IMO Block Diagram
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14.3.1.2

The ILO produces two primary independent output clocks
with no external components and with very low power con-
sumption. These two outputs operate at nominal frequen-
cies of 1 kHz and 100 kHz. The two clocks run
independently, are not synchronized to each other, and can
be enabled or disabled together or independently. The 1 kHz
clock is typically used for a background central timewheel
and also for the watchdog timer. The 100 kHz clock can pro-
vide a low-power system clock, or it can be used to time
intervals such as for sleep mode entry and exit. A third 33-
kHz clock output is available — a divide-by-3 of the 100 kHz
output.

Internal Low-Speed Oscillator

In addition to the multiplexed output that can enter the clock
distribution, the output clocks route to the following func-
tions:

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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m clk_ilolK — to the central timewheel (also called the
sleep timer) and watchdog timer. See the Low-Power
Modes chapter on page 135 for more details.

m clk_ilo100K — to the fast timewheel.

This oscillator operates at very low current and is, therefore,
the best fit for use in low-power modes. The two sources,
1 kHz and 100 kHz, can be enabled and disabled, using the
SLOWCLK_ILO_CRO[1] and SLOWCLK_ILO_CRO[2],
respectively. SLOWCLK_ILO_CRO[5] enables the divide by
3 to create the 33 kHz output. The out puts from the ILO can
be routed to the clock distribution network.
CLKDIST_CR[3:2] is responsible for this selection.

Figure 14-3 is a summary block diagram of the ILO. There
are dedicated routes for some of the clock outputs that are
not shown in the figure.
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Figure 14-3. ILO Block Diagram
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The ILO clocks are all disabled in the Hibernate mode.
SLOWCLK_ILO_CRO[4] is the power down mode bit gov-
erning the wakeup speeds of the device. Setting the bit
slows down the startup, but it provides a low-power opera-
tion.

14.3.2

PSoC devices have two external crystal oscillators: the MHz
Crystal Oscillator (MHzECO) and the 32.768 kHz Crystal
Oscillator (kHzECO).

External Oscillators

14.3.2.1

The 4-25 MHz external crystal oscillator MHZECO circuit
provides for precision clock signals. The block supports a
variety of fundamental mode parallel resonance crystals.
When used in conjunction with the on-chip PLL, a wide
range of precision clock frequencies can be synthesized, up
to 80 MHz.

MHz Crystal Oscillator

CLKDIST_CR[3:2]

The crystal pins are shared with a standard 1/O function
(GPIO / LCD / Analog Global), which must be tristated to
operate the crystal oscillator with an attached external crys-
tal.

The crystal output routes to the clock distribution network as
a clock source option, and it can also route through the IMO
doubler to produce doubled frequencies, if the crystal fre-
quency is in the valid range for the doubler.

The oscillator allows for a wide range of crystal types and
frequencies. Startup times vary with frequency and crystal
quality. The xcfg bits of the FASTCLK_XMHZ_CFGO0[4:0]
register are used to match the oscillator settings to the crys-
tal. The oscillator can be enabled by
FASTCLK_XMHZ_CSRJ[0].

Figure 14-4 is a block diagram of the MHzECO.

Figure 14-4. MHzECO Block Diagram
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Figure 14-5. MHzECO Oscillator Fault Recovery
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Fault Recovery

The block contains an option to detect crystal oscillator fail-
ure. Clock failure is detected by comparing the amplitude of
the Xln signal to a user-selectable voltage. This voltage is
selected using the "vref_sel_wd" bits in the register
FASTCLK_XMHZ_CFGL1. The clock failure can occur due to
environmental conditions (such as moisture) that affect the
crystal and cause oscillators to stop. Clock failure status is
indicated by the clock error status bit
(FASTCLK_XMHZ_CSR][7]).

If the FASTCLK_XMHZ_CSR][6] bit is set, the fault recovery
option is enabled. In this case, when the crystal oscillator
fails, the crystal oscillator output is driven low. The IMO is
enabled (if it is not already running), and the IMO output
routes through the crystal oscillator output mux. It takes six
IMO cycles after error signal assertion for the IMO to appear
outside of the block. In this way, the system can continue to
operate through a crystal fault. This functionality is illus-
trated in Figure 14-5.

Low-power Operation

The MHz crystal oscillator does not operate in the SLEEP
and HIBERNATE modes. This means that you need to dis-
able the oscillator to enter SLEEP and HIBERNATE modes.
The 32 kHz crystal oscillator can be kept active, for precise
timing (RTC), in SLEEP mode. If the MHz crystal oscillator is
not disabled when the device is put into any of these modes,
the mode entry is skipped, and the code continues to exe-
cute in active mode. Because this clock must be disabled to
enter SLEEP mode, a typical approach is to switch clock
trees to the IMO source and then disable the crystal oscilla-
tor (and the PLL also, if it is on). Then SLEEP or HIBER-
NATE mode can be entered. After waking up from a sleep
mode, the crystal oscillator can be reenabled and used as a
clock source when stable.

14.3.2.2  32.768 kHz Crystal Oscillator

The 32.768 kHz external crystal oscillator kHzECO circuit
produces a precision timing signal at very low power. The
circuit uses an inexpensive external 32.768 kHz crystal and
associated load capacitors that can be used to produce a
real time clock. Current consumption can be much less than
1 pA.

This clock routes to the clock distribution network as an
input clock source and also to the RTC timer. This oscillator
is one of the clock sources available to the clock distribution
logic. The kHzECO is enabled and disabled by the register
SLOWCLK_ X32_CR][0]. Figure 14-6 is a block diagram of
the kHzECO.
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Figure 14-6. kHzECO Block Diagram
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Low-power Operation

The oscillator operates at two power levels, depending on
the state of the LPM bit (SLOWCLK_X32_CRJ[1]) and the
device sleep mode status. In Active mode, by default, the
oscillator is configured for high-power mode, which con-
sumes 1-3 pA and minimizes sensitivity to noise. If the LPM
mode is set for a low-power mode, the oscillator goes into
low power only when the device goes to SLEEP/HIBER-
NATE. If LP_ALLOW (SLOWCLK_X32_CFG[7]) is set, the
oscillator enters low-power mode immediately when the
LPM bit is set.

When enabled, the oscillator does not stabilize instantly, and
requires some time to oscillate consistently. The ANA_STAT
(SLOWCLK_X32_CR[5]) bit indicates whether oscillation is
stable after measuring the waveform’s amplitude. The oscil-
lator must always be started in high power mode to avoid
excessively long startup delays.

Real Time Clock

One of the major uses of the kHzECO oscillator is for RTC
implementation. The block level illustration of the RTC
implementation is shown in Figure 14-7.

The RTC timing is derived from the 32 kHz external crystal
oscillator, as shown in Figure 14-7. Therefore, for the func-
tioning of the RTC, the 32 kHz external crystal must be
enabled through the register SLOWCLK_X32_CRJ[0]. The
generated 32 kHz is divided to achieve a one pulse per sec-
ond. The register PM_TW_CFG2[4] enables one pulse per
second functionality.

By enabling the bit PM_TW_CFG2[5], the RTC generates
an interrupt every second. The interrupt is routed through
the DSI and is brought out as an interrupt. See the UDB
Array and Digital System Interconnect chapter on page 217
for more details on usage. RTC functionality is available for
use in all power modes except the Hibernate mode.
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Figure 14-7. RTC Implementation
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14.3.3 Oscillator Summary trees. Note that when a PLL parameter is changed or the

PLL is enabled or disabled, it takes four bus clock cycles
! (50 ps) for the corresponding status to be reflected in the
in Table 14-1. FASTCLK_PLL_SR[0] status bit. Additionally, the
FASTCLK_PLL_SRJO0] bit is not updated while the PLL is
disabled. This delay must be incorporated in the firmware

A summary of the oscillator output frequency ratings is listed

Table 14-1. Oscillator Summary

Souince (w11 alic before reading the status bit.
IMO 3 MHz 74.7 MHz ]
Lo 1 kHz 100 kHz Th'e PL.LS charge pgmp current (Icp) can be conflgurgd
using bits 6:4 of register FASTCLK_PLL_CFGL1. This bit-
MHzECO 4 MHz 25 MHz )
field must be set to 0x01 (2 pA) when the output frequency
kHzECO 32.768 kHz < 67 MHz. It must be set to 0x02 (3 pA) when the output fre-
PLL 24 MHz | 80 MHz quency is > 67 MHz.
14.3.4 DSI Clocks The PLL takes inputs from the IMO, the crystal oscillator

MHzECO, or the DSI, which can be an external clock.
Signals can be routed from the Digital Signal Interconnect

(DsSI) and used as clocks in the clock trees. The sources of Low-power Operation

these clocks include: The PLL must be disabled before going into SLEEP/HIBER-

m Clocks developed in UDBs NATE mode. This allows clean entry into SLEEP/HIBER-
m  Off-chip clocks routed through pins NATE and wakeup. The PLL can be reenabled after wakeup
m  Clock outputs from the clock distribution; fed directly and when it is locked; then it can be used as a system clock.
back into the network through the routing fabric The device is designed not to go into SLEEP/HIBERNATE
mode if the PLL is enabled when mode entry is attempted.

14.3.5 Phase-Locked Loop (Execution continues without entering SLEEP/HIBERNATE

mode in this case.)

The on-chip Phase-Locked Loop (PLL) can be used to boost
the clock frequency of the selected clock input (that is, IMO,
MHzECO, and DSI clock) to run the device at maximum
operating frequency. The PLL can synthesize clock frequen-
cies in the range of 24 — 80 MHz. Its input and feedback
dividers allow fine enough resolution to create many desired
system clock frequencies. The PLL output routes to the
clock distribution network as one of the possible input
sources. The PLL is shown in Figure 14-8.

The PLL uses a 4-bit input divider Q (FASTCLK_PLL_Q) on
the reference clock and an 8-bit feedback divider P
(FASTCLK_PLL_P). The outputs of these two dividers are
compared and locked, resulting in an output frequency that
is P/Q times the input reference clock. The PLL achieves
frequency lock in less than 250 ps, and provides a bit that
shows lock status (FASTCLK_PLL_SR[0]). When lock is
achieved, the PLL output clock can be routed into the clock
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Figure 14-8. PLL Block Diagram
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All of the clock sources discussed are distributed into the various domains of the device through clock distribution logic.
Figure shows a block diagram of the clock distribution system.

Figure 14-9. Clock Distribution System
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All of the clocks available in the device are routed across the
device through digital and analog clock dividers. There are

certain peripherals that require specific clock source for its
operation. For example, Watchdog Timer (WDT) requires
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The clock distribution can be considered to be a combina-
tion of the following clock trees.

m System clocks
m Digital clocks
m  Analog clocks
m  USB clock

The clock distribution provides a set of eight dividers for the
digital clock tree and four analog clock dividers for the ana-
log clock tree. All of the clock sources come as input options
for all of the clock dividers through eight input mux. Also, the
divider outputs are synchronized to their respective domain
clocks.

A Master Clock Mux is available for distributing the sync
clocks. There are options to provide delay on the digital sync
clock. All eight digital dividers are synchronized to the same
digital clock, but each of the analog clock divider outputs
can be synchronized to analog clocks of different delays.
The clock distribution also is responsible for the generation
of the major clock domains in the device, such as the Sys-
tem clock, bus clock, and others.

Clocking System

14.4.1 Master Clock Mux

The Master Clock Mux, shown in Figure 14-10, selects one
clock from among the PLL, selected IMO output, the MHz
crystal oscillator, and the DSI input (dsi_clkin). This clock
source feeds the phase mod circuit to produce skewed
clocks that are selected by the digital and analog phase mux
blocks. The Master Clock Mux provides the re-sync clocks
for the network: clk_sync_dig and the analog system clocks,
clk_sync_a. The master clock must be configured to be the
fastest clock in the system. The master clock also provides
a mechanism for switching the clock source for multiple
clock trees instantaneously, while maintaining clock align-
ments. For systems that must maintain known clock rela-
tionships, clock trees select the clk _sync _dig (or
clk_sync_a*) clock as their input source.

Therefore, when the source is changed (for example, when
moving from the IMO source initially to a new PLL- synthe-
sized frequency), all clocks change together through the
Master Clock Mux output. The Master Clock Mux contains
an 8-bit divider to generate lower frequency clocks,
(CLKDIST_MSTRO[7:0Q]). It outputs an approximately 50%
clock.

Figure 14-10. Master Clock Mux

CLKDIST_MSTR1_SRC_SEL[1:0]

Divide-by-1
clk_pll —
clk_ imo — 8-Bit Divider
(1-256) —D Q
clk_eco_MHz — CLKDIST_MSTRO clk_sync
dsi_clkin  ——

14.4.2 USB Clock

The USB clock domain is unique because it can operate largely asynchronously from the main clock network. The USB logic
contains a synchronous bus interface to the device while being able to run on a potentially asynchronous clock to process
USB data. For full speed USB, the clock must have an accuracy of £0.25%.

The USB Clock Mux, shown in Figure 14-11, provides the clock to the USB logic.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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Figure 14-11. USB Clock Mux
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The USB clock mux selects the USB clock from these clock
sources.

m imolx (these options are available inside the IMO block):

o 48 MHz DSI clock subjected to the accuracy of the
source of the clock

m imo2x (these options are available inside the IMO block):
O 24 MHz crystal with doubler
o 24 MHz IMO with doubler with USB lock
3 24 MHz DSI input with doubler
m  clk_pll:
o Crystal with PLL to generate 48 MHz
@ IMO with PLL to generate 48 MHz
a DSl input with PLL to generate 48 MHz
m DSlinput:
O 48 MHz
In this situation, any of the choices can produce a valid
48 MHz clock for the USB. If the internal main oscillator is
selected, it must be run with the oscillator locking function

enabled, in which case it self tunes to the required USB
accuracy when USB traffic arrives at the device.

14.4.3 Clock Dividers

USB Mode Operation

This device works with an automatic clock frequency locking
circuit for USB operation. This design allows for small fre-
guency adjustments based on measurements of the incom-
ing USB timing (frame markers) versus the IMO clock rate.
With this clock locking loop, the clock frequency can stay
within spec for the USB Full Speed mode (+0.25% accu-
rate). The IMO must be operated at 24 MHz for proper clock
locking, with the doubler supplying 48 MHz for USB logic.
The USB locking feature for the IMO can be enabled by the
register bit FASTCLK_IMO_CRJ6].

Alternately, a 24 MHz crystal controlled clock doubled to 48
MHz can be supplied for Full Speed USB operation. Other
crystal frequencies, such as 4 MHz can be used with the
PLL to synthesize the necessary 48 MHz.

Valid frequency for the PLL output, in this case, is 48 MHz.
The DSI signal, dsi_glb_div[0], provides another DSI signal
choice in addition to the clk_imo option above. As with the
PLL, this clock must have USB accuracy and be 48 MHz.

Clock dividers form the main part of the clock distribution module and are used to divide and synchronize clock domains. Var-
ious clock sources and divider modes may be used together to generate many frequencies with some control over the duty

cycle, as depicted in Figure 14-12.
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Figure 14-12. Divider Implementation
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The divider automatically reloads its divide count after
reaching the terminal count of zero. The divider count is set
in the register CLKDIST_DCFGJ[0..7]_CFGO0/1 for digital
dividers and CLKDIST_ACFG[0..3]_CFGO0/1 for analog
dividers. The counter is driven by the clock source selected
from an 8-input mux, and the source selection is done in the
register CLKDIST_DCFG[0..7]_CFG2[2:0] for digital divid-
ers and CLKDIST_ACFGJ0..7]_CFG2[2:0] for analog divid-
ers. There are two divider output modes: single-cycle pulse
and 50% duty cycle.

In either output mode, a divide value of O causes the divider
to be bypassed, giving a divide by 1. In this case, the input
clock is passed to the output after a resync, if the sync
option is selected (see Clock Synchronization on page 120).

For a load value of M, the total period of the output clock is
N =M + 1 cycles (of the selected input clock). For example,
a load value of 4 gives a 5-cycle long output clock period.

Divider outputs can each be configured to give one of four
waveforms, as described below.

14.4.3.1

In Single Cycle Pulse mode, by default, the divider gener-
ates a single high pulse clock at either the cycle after the ter-
minal (zero) count or the half-count, and is otherwise low.
This produces an output clock that is high for one cycle of
the input clock, resulting in a 1-of-N duty cycle clock. This is
illustrated in Figure 14-12.

Single Cycle Pulse Mode

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

14.4.3.2 50% Duty Cycle Mode

In 50% Duty Cycle mode, the output produces a clock that
has an approximate 50% duty cycle, depending on whether
the total number of counter cycles is even or odd. The 50%
clock rising edge occurs at the equivalent rising edge loca-
tion of the 1/N clock.

For a count of M, there are N = M + 1 input clock cycles in
the divider period. If M is odd, the total cycle count N is
even, allowing for a nominal 50% duty cycle. The clock is
high for the first (M + 1)/2 cycles, and then goes low for the
remaining (M + 1)/2 cycles.

If M is even, the total cycle count is odd, which means that
the output clock is high longer than it is low (in standard
phase mode). Specifically, it is high for the first (M/2) + 1
cycles and then low for the remaining M/2 cycles. This is
illustrated in Figure 14-12 on page 119 forM =3 and M = 4.

The CLKDIST_DCFGI[x]_CFG2[4] or
CLKDIST_ACFG[x]_CFG2[4] bit in the configuration register
for each clock output can be set high to provide the 50%
duty cycle mode. An exact 50% duty cycle cannot be guar-
anteed in all cases, as it depends on the phase and fre-
quency differences between the output clock and the sync
clock.
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14.4.3.3  Early Phase Option Each of the four analog dividers can be synchronized to four
distinct phase shifted clocks. The phase on the respective
analog dividers sync clocks can be provided in the
PHASE_DLY field (CLKDIST_ACFG[x]_CFG3[3:0]). The
analog clocks become synchronized when the SYNC bit is
set (CLKDIST_ACFG|x]_CFG2[3]). These divided clocks
synchronized to the analog clocks are called clk_a.

In addition to the two duty cycle choices, the outputs can be
phase shifted to either go high after the terminal count, or at
the half-period cycle. The default is referred to as Standard
phase, with the rising edge of the output after the terminal
count.

The other option is called the Early Phase because the out-
put can be shifted earlier in time to an approximate count,
which is one-half of the divide value. The ) )
CLKDIST _DCFG_CFG2[5] or CLKDIST ACFG_CFG2[5] bit m Resynchronized c.:lock -A clo§k running at a maximum
in the configuration register for each clock output can be set rate of clk_sync/2 is resynchronized by the phase

high to give the Early Phase mode, with the rising edge near delayed clk_sync. This output is activated by setting the
the half count. sync bit.

The output of each clock tree provides for selection of one of
four output clocks:

m Phase delayed clk_sync (such as clk_sync_dig) —
The clock tree runs at the same rate as clk_sync, but just
outputs this clock with proper phase delay. Note that the
input clock source is ignored in this case. The output
buffer is designed to match the final sync flop delay.

Analog clock dividers are similar in their architecture to digi-
tal dividers. However, they have an extra resync circuit to
synchronize the analog clock to the digital domain clocks.
Therefore, each of the analog dividers also has an output
synchronized with the digital domain. This clock is synchro-
nized to the output of the digital phase mux. The digital syn-
chronized analog divider output is called clk_ad. This divider
is useful for clean communication between analog and digi-

m  Unsynchronized divided clock — This produces an
asynchronous clock, subject to the limitations described
in Asynchronous Clocks on page 122. This mode is
applicable when the sync bit is reset and the divider has

tal domain. o
a nonzero divide value.
14.4.4 Clock Synchronization m Bypassed clock source — This routes the clock trees
o o ) selected source to the output without going through the
All digital and analog divider outputs can be synchronized to divider. This happens when the divider value is set to 0
the clk_sync_dig signals (CLKDIST_DCFG[x] CFG2[3] or and sync bit is reset. As in the previous case, this also
CLKDIST_ACFG[x]_CFG2[3]), as shown in Figure 14-13. produces an asynchronous clock.

Each digital divider can be synchronized to the digital phase Note The clock divider output used by fixed-function blocks

mux output by setting the sync Pit has not been delayed to match the clock output used by the
(CLKDIST_DCFG[x]_CFG2[3]). The phase delay for the dig-  yppB array and are therefore asynchronous. To avoid STA
ital divider is based on the phase shift field of Nonvolatile \yarnings and other potential problems, always put a Sync

Latch (NVL) bits DIG_PHS_DLY[3:0]. Component between fixed blocks and UDB Components.
Figure 14-13. Resync Option Diagram
clkout _ sel
clock source Divider D Q i i
clk_sync_d Clock
(or clk_sync_a0-a3) _l>_ tree
output
A
/
Asynchronous clocks (limited use)

14.4.5 Phase Selection and Control

To keep the environment quiet in the analog processing domain, a phase difference must exist between the analog and digital
system clocks. For this reason, in PSoC devices, a delay chain circuit provides taps to control the phase for the digital and
analog clocks. This delay chain provides up to a 10 ns phase adjustment with nominal steps of 0.5 ns. The phase shifter is
shown in Figure 14-14.
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Figure 14-14. Phase Shifter
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The phase shifter consists of a chain of (nominally) 0.5 ns 14.4.6 Divider Update

buffers connected in cascade, with the output of each buffer
ported out of the circuit (21 outputs). The input to this chain
is clk_sync from the master clock divider. Five 5-bit muxes
select the sync clock to drive the resync circuits. One is
clk_sync_dig for the digital clock dividers (clk_bus and all
digital clock dividers). The other four are independent delay
selections, one for each analog divider. The selected phase
value is defined in NVL bits for the digital and
ACFGI[n]_CLKDIST_ACFG_CFG3} PHASE _DLY for the
analog clocks.

The clk_sync_dig phase shift selection must be applied at
power up through NVL settings, because changing its value
can cause clock glitching; the clk_bus clock should not be
stopped for such a change. The analog phase shift selec-
tions can be made dynamically, because their output clocks
can be disabled during any phase shift change.

Outputs in the delay chain may have increased jitter. The
expectation is that, in systems that need a low-jitter analog
clock, the undelayed output (first tap) is selected because it
has the lowest jitter.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

To allow for clean updates of the dividers while running, and
to align the starting point for a group of dividers, a load
enable mechanism is provided. When a clock is running, it
automatically reloads its count value on the terminal count.
If a new value is loaded during countdown of the counter,
this new value is loaded at the end of the count, and the
next output clock period uses the new value. Because the
divide value is 16 bits, there is a possibility that, when updat-
ing this register with two 8-bit writes, the full update might
not complete when the terminal count occurs. This leads to
an unexpected period being reloaded.

To avoid this problem, a 16-bit shadow value (contained in
registers {CLKDIST_WRKO0*} and {CLKDIST_WRK1*})
allows atomic loads of the dividers, so the 16-bit dividers
can be safely updated dynamically (while running). The
shadow value can be loaded with two separate 8-bit opera-
tions.

The mask registers  ({CLKDIST_DMASK*}  and
{CLKDIST_AMASK?*}) allow the user to select the target
dividers for this shadow value. When the load bit,
{CLKDIST_LD} LOAD, register is written with a 1, all divid-
ers selected in the mask registers have their period count
updated to the shadow value. (If the divider is not enabled, it
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is safe to do partial writes directly to the divider period regis-
ter without using the shadow register.)

To align clocks, the mask registers are used again, but this
time, they select dividers for auto-alignment. When the
{CLKDIST_LD} SYNC_EN bit register is written with a 1, all
dividers selected in mask registers start (or re-start)
together. If the dividers are already enabled, they immedi-
ately reload and continue counting from this value. If they
are not enabled, writing the SYNC_EN bit also sets any cor-
responding enable bits in the divider enable registers
({PM_ACT_CFG?*}), and the dividers begin counting.

Writing a 1 to both of the {CLKDIST_LD} LOAD and
{CLKDIST_LD} SYNC_EN bits can combine these two
operations. This causes all selected dividers to load the
shadow register value into their count value, to set all
selected divider register enables (if not already enabled),
and then to start (or restart) with this setting. The sync load-
ing feature is not supported for clocks that are asynchro-
nous to clk_bus. For instance, an external clock coming
from the DSI that is not generated from clk_bus cannot have
its divide value changed on the fly reliably. Glitching or tran-
sient improper divider loads may occur in this scenario.

The clock hardware does not support changing the clock
divider from N > 1 to N = 1 when the clock is enabled
because it can produce illegal clock pulses. If the clock
divider must be changed to N =1, the respective clock
divider en_clk_d bit in the PM_ACT_CFG2 register must
first be disabled before making the change and then re-
enabled after the clock divider change is complete.

14.4.7

Clock trees may be gated off (disabled). These gating sig-
nals come from the power manager, which contains a regis-
ter, {PM_ACT_CFG1, PM_ACT_CFG2*}, to allow user
selection of trees to enable or disable.

Power Gating of Clock Outputs

When a clock tree is disabled, its divider is reset so that
when reenabled, it reloads its count value. That is, the
divider counters do not pause and hold their counts when
disabled; they always start over with the latest configured
divide count when reenabled.

14.4.8

The System Clock is derived from the clk_sync_dig, which is
a phase shifted version of clk_sync. The System Clock, also
named clk_bus, is the clock that drives the PHUB and asso-
ciated bus logic. This must be the fastest synchronous clock
that outputs to the system. There is an option for a 16-bit
divider on the clk_sync_dig to generate the clk_bus
CLKDIST_BCFG1/2. This also has the same resynchroniza-
tion options as the other digital dividers.

System Clock
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14.4.9

Generally, all clocks used in the device must be derived
from the same source, or synchronized to the main clk_sync
clock. However there are possible exceptions:

Asynchronous Clocks

m A signal that comes on-chip routes through a GPIO,
routes to the UDB array, interacts only with self-con-
tained UDB functions, and routes out of the device.

m  Similar to the previous, but the signal routes to the inter-
rupt controller instead of off-chip. The interrupt controller
is able to handle arbitrarily phased events.

m  USB operation with the IMO locking to USB traffic.
Although unlikely, in this case, the rest of the device may
run off of a different clock, because the USB circuitry
contains its own clk_bus synchronous interface, even if
its USB clock is not synchronous.

14.5

During sleep modes, clock network outputs are gated off,
and most clock sources are disabled automatically by the
power manager. The low frequency (kHz) clocks may still
run, and various clocks are configured by the power man-
ager to support wakeup and buzz modes. See the Low-
Power Modes chapter on page 135 for more details.

Low-Power Mode Operation

The system will not go into a sleep mode if either the MHz
crystal oscillator or the PLL are enabled. If either of these
clocks are enabled, the part will simply continue execution
without entering a sleep mode. Therefore, to enter a sleep
mode when using either the MHz crystal oscillator or PLL,
the user must configure the part to run from the IMO and
then disable those clock sources. When entering and exiting
low-power modes, the IMO should be set to 12 MHz with a
post divide of 1. To achieve robust clocking into and out of
sleep and hibernate modes, the clocks and clock dividers
must be sequenced in firmware. This will also meet the
wake up time specifications. PSoC Creator provides APIs to
do this sequencing both before entering and after exiting
low-power modes.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



A

ws CYPRESS

g EMBEDDED IN TOMORROW

14.6

Clock Naming Summary

Table 14-2 lists clock signals and their descriptions.

Table 14-2. Clock Signals

Clock Signal Description
ok sync d Synchronization clock from the Master clock mux used to

Sync._{ synchronize the dividers in the distribution

. . Clocks that are taken as input into the clock distribution
dsi_clkin

- from DSI
clk_bus Bus clock for all peripherals
clk_d[0:7] Output clock from the seven digital dividers
clk_ad[0:3] Outpl_Jt_cIock from the four analog dividers synchronized to

the digital domain clock
. Output clock from the four analog dividers synchronized to
clk_a[0:3] -
the analog synchronization clock

clk_usb Clock for USB block
clk_imo2x Output of the doubler in the IMO block
clk_imo IMO output clock
clk_ilolk 1 kHz output from ILO
clk_ilo100k 100 kHz output from ILO
clk_ilo33k 33 kHz output from ILO
clk_eco_kHz | 32.768 kHz output from the kHz ECO
clk_eco_ MHz | 4-25 MHz output of the MHz ECO
clk_pll PLL output
dsi_glb_div DSI global clock source to USB block
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PSoC® 5LP devices have separate external analog and digital supply pins, labeled Vdda and Vddd, respectively. The devices
have two internal 1.8 V regulators that provide the digital (Vccd) and analog (Vcca) supplies for the internal core logic. The
output pins of the regulators (Vccd and Vcca) have very specific capacitor requirements that are listed in the datasheet.

15.1 Features

These regulators are available:

Analog regulator for the analog domain supply
Digital regulator for the digital domain supply
Sleep regulator for the sleep domain

I2C regulator to power the 12C logic

Hibernate regulator to supply keep-alive power for state retention during hibernate mode
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15.2 Block Diagram

The power system consists of separate analog, digital, and I/O supply pins, labeled Vdda, Vddd, and Vddiox, respectively. It
also includes two internal 1.8-V regulators that provide the digital (Vccd) and analog (Vcca) supplies for the internal core
logic. The output pins of the regulators and the Vddio pins must have capacitors connected, as shown in Figure 15-1. The
power system also contains a sleep regulator, an 12c regulator, and a hibernate regulator.

Vdda must be greater than or equal to all other power supply pins (Vddd, Vddios) in PSoC LP. This power supply condition is
required for the proper ON/OFF condition of the analog switches inside the device, and also for the implementation of the
internal level switching logic when signals transition between multiple supply voltage domains.

Figure 15-1. Power Domain Block Diagram
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15.3 How It Works

The regulators shown in Figure 15-1 power the various
domains of the device. All regulators, except the analog reg-
ulator, draw their input power from the VVddd pin supply.

15.3.1

Digital and analog regulators are active during the active or
alternate device active modes.They go into a low-power
mode of operation in sleep or hibernate mode. The sleep
and hibernate regulators are designed to fulfill power
requirements in the low-power modes of the device.

Regulator Summary

153.11

For external supplies from 1.8 V to 5.5 V, regulators are
powered and the supply is provided through the Vddd/ Vdda
pins. An external cap of ~1 pF is connected to the Vced and
Vcca pins.

Internal Regulators

For the 1.71 V < Vcc < 1.89 V external supply, power up the
device with Vccd/Vceca pins. In this mode, short the Vddd pin
to Veed and short the Vdda pin to Vcca. The internal regula-
tor remains powered by default. After power up, disable the
regulators, using the register PWRSYS.CRO to reduce
power consumption.

15.3.1.2
The sleep regulator supplies power to these circuits during
the device sleep mode.

32 kHz ECO

ILO

RTC Timer

WDT

Central Timewheel (CTW)

Fast Timewheel (FTW)

Sleep Regulator

15.3.1.3

The hibernate regulator, whose output is called Keep-Alive
power (Vpyrka), Powers domains of the device responsible
for the state retention in hibernate mode. The Vyka is
shorted to the active domain during active mode.

Hibernate Regulator

15.3.2

PSoC devices also have a boost converter that accepts an
input voltage supplied by a battery or other source; it pro-
duces a selectable, higher output voltage than the input volt-
age. Applications that use a supply voltage of less than
1.71V, such as solar panels or single cell battery supplies,
may use the on-chip boost converter to generate a minimum
of 1.8-V supply voltage. The boost converter may also be

Boost Converter
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used in any system that requires a higher operating voltage
than the supply provides, such as driving a 5.0-V LCD glass
in a 3.3-V system. With the addition of an inductor, Schottky
diode, and capacitors, it produces a selectable output volt-
age sourcing enough current to operate the PSoC and other
onboard components.

The boost converter accepts an input voltage Vgar from
0.5V to 3.6 V, and can start up with Vgat as low as 0.5 V.
The converter provides a user-configurable output voltage
of 1.8V to 5.0V (Vgoyr) in 100-mV increments by setting
BOOST_CRO[4:0]. VgaT is typically less than Voyt; if Vgat
is greater than or equal to Voyt, then Vgoyt will be slightly
less than Vgt due to resistive losses in the boost converter.
The block can deliver up to 50 mA (IgoosTt) depending on
configuration to both the PSoC device and external compo-
nents. The sum of all current sinks in the design including
the PSoC device, PSoC /O pin loads, and external compo-
nent loads must be less than the lIggosT Specified maximum
current.

Four pins are associated with the boost converter: VBAT,
VSSB, VBOOST, and IND. The boosted output voltage is
sensed at the VBOOST pin and must be connected directly
to the chip's supply inputs: VDDA, VDDD, and VDDIO, if
used to power the PSoC device.

The boost converter requires four components in addition to
those required in a non-boost design, as shown in
Figure 15-2. A 22-uF capacitor (Cgag) is required close to
the VBAT pin to provide local bulk storage of the battery volt-
age and provide regulator stability. A diode between the bat-
tery and VBAT pin should not be used for reverse polarity
protection because the diodes forward voltage drop reduces
the Vgar Voltage. Between the VBAT and IND pins, an
inductor of 4.7 uH, 10 uH, or 22 uH is required. The inductor
value can be optimized to increase the boost converter effi-
ciency based on input voltage, output voltage, temperature,
and current. Inductor size is determined by following the
design guidance located in this section and the device data-
sheets electrical specifications. The inductor must be placed
within 1 cm of the VBAT and IND pins and have a minimum
saturation current of 750 mA. Between the IND and
VBOOST pins, a Schottky diode must be placed within 1 cm
of the pins. The Schottky diode should have a forward cur-
rent rating of at least 1.0 A and a reverse voltage of at least
20 V. A 22-uF bulk capacitor (Cgppost) must be connected
close to VBOOST to provide regulator output stability. It is
important to sum the total capacitance connected to the
VBOOST pin and ensure the maximum Cgoogt Specifica-
tion is not exceeded. All capacitors must be rated for a mini-
mum of 10 V to minimize capacitive losses due to voltage
de-rating.
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Figure 15-2. Application of Boost Converter Powering PSoC Device
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The boost converter may also generate a supply that is not
used directly by the PSoC device. An example of this use
case is boosting a 1.8-V supply to 4.0 V to drive a white
LED. If the boost converter is not supplying the PSoC
devices Vppa, Vppps and Vppo, it must comply with the
same design rules as supplying the PSoC device, but with a
change to the bulk capacitor requirements. A parallel
arrangement 22 uF, 1.0 uF, and 0.1 uF capacitors are all
required on the Vout supply and must be placed within 1 cm
of the VBOOST pin to ensure regulator stability.

128 PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Power Supply and Monitoring

Figure 15-3. Application of Boost Converter not Powering PSoC Device
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The boost converter is enabled or disabled by the register
bit, BOOST_CR1[3]. The device provides the option of
changing the boost output voltage by writing into the
BOOST_CRO[4:0] register. By default, at startup the boost
converter is enabled and configured for a 1.8-V output. If the
boost converter is not used in a given application, tie the
VBAT, VSSB, and VBOOST pins to ground and leave the
IND pin unconnected.

15.3.2.1

The boost converter can be operated in two different modes:
active and standby selected by the BOOST_CRO[6:5] regis-
ter.

Operating Modes

Active mode is the normal mode of operation where the
boost regulator actively generates a regulated output volt-
age. In active mode, the switching frequency is set to 400
kHz using an oscillator integrated into the boost converter
and is not synchronized to any other clock. The output volt-
age is continuously monitored and supervisory data pro-
vided in BOOST_SR[4:0]. This register provides supervisory
data against the output voltage selected.

In standby mode, the boost oscillator and most boost func-
tions are disabled, thus reducing power consumption of the
boost circuit. In standby mode, only minimal power is pro-
vided, typically < 5 pA to power the PSoC device in sleep
mode. The processor can determine when to use the thump

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

bit BOOST_CRO[7] to switch the transistor on for a 1-ps
pulse when the voltage falls below the nominal voltage.

In boost standby mode, the external 32-kHz crystal can be
used to trigger inductor boost pulses on the rising and falling
edge of the clock when the output voltage is less than the
configured value. This is called automatic thump mode
(ATM). To enable ATM, set the BOOST_CR2[0] bit and
select the external 32-kHz crystal clock by setting
BOOST_CR1[1:0] to Ox3.

The boost typically draws 250 pA in active mode and 25 pA
in standby mode. The boost operating modes must be used
in conjunction with chip power modes to minimize total
power consumption. Table 15-1 lists the boost power modes
available in different chip power modes.

Table 15-1. Chip and Boost Power Modes Compatibility

Chip Power Modes Boost Power Modes

Active or alternate

active mode Boost must be operated in its active mode.

Boost can be operated in either active or standby
mode. In boost standby mode, the chip must wake
up periodically for chip active-mode refresh or thump
and return to sleep.

Sleep mode

Boost can only be operated in its active mode. How-
ever, it is recommended not to use boost in chip
hibernate mode due to high current consumption in
boost active mode.

Hibernate mode
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15.3.2.2

Status monitoring for input and output voltages of the boost
converter is available in the status register BOOST_SR.

Status Monitoring

Output Voltage Monitor - The BOOST_SR[4:0] register
provides status of the output voltage against the set nominal
output voltage.

Bit 4: ov - Above overvoltage threshold (nominal + 50 mV).

Bit 3: vhi - Above high regulation threshold (nominal
+25 mV).

Bit 2: vnom - Above nominal threshold (nominal).
Bit 1: vlo - Below low regulation threshold (nominal -25 mV).
Bit 0: uv - Below under-voltage limit (nominal -50 mV).

The boost converter generates a power manager interrupt
when an under-voltage event occurs. This interrupt can be
configured to wake the chip from Alternate Active or Sleep
mode. If an under-voltage event occurs, BOOST_SR2[0] will
be set to '1' until the register is read or a reset event occurs.
To propagate the under-voltage condition to the interrupt
controller to trigger an ISR, the BOOST_CR4[0] bit must be
set.

15.3.2.3

To ensure boost inrush current is within specification at
startup, the Enable Fast IMO During Startup value must be
unchecked in the PSoC Creator IDE. The Enable Fast IMO
During Startup option is found in PSoC Creator in the
design-wide resources (cydwr) file System tab. Unchecking
this option configures the device to run at 12 MHz versus 48
MHz during startup while configuring the device. The slower
clock speed results in reduced current draw through the
boost circuit during the critical startup phase.

Boost Firmware Requirements

When the bus clock is configured to a frequency greater
than 24 MHz, the boost configuration registers -
BOOST_CRO, BOOST_CR1, BOOST_CR2, and
BOOST_CR3 - must be read with two consecutive read
operations, discarding the result from the first read. It is not
allowed to access any other boost configuration register
between two reads of a boost configuration register, but it is
acceptable to access non-boost registers. To avoid this situ-
ation, boost registers should not be read in both main code
as well as an ISR, or interrupts should be disabled when
reading these four registers. This requirement of reading the
control registers twice is to avoid a timing issue in accessing
these registers. Writing of the boost registers can however
occur at any clock rate with a single write instruction.

On startup, the boost regulator uses an internal low preci-
sion reference to ensure the device can boot up to at least
1.71 V. To meet datasheet specifications, the boost must
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switch to the devices precision voltage reference that is
external to the boost block. The external precision reference
is selected by setting the BOOST_CRZ2[3] bit. The external
reference is automatically selected in the device boot code
generated by the PSoC Creator IDE.

15.3.2.4

Correct operation of the boost converter requires specific
component values determined for each design's unique
operating conditions. The Cgat capacitor, inductor, Schottky
diode, and CgppgT Capacitor components are required with
the values specified in the datasheet electrical specifica-
tions. The only variable component value is the inductor
LeoosT, Which is sized primarily for correct operation of the
boost across operating conditions and secondarily for effi-
ciency. Additional operating region constraints exist for

Vout Vear lour and Ta.

Boost Design Process

Follow these steps to determine the boost converter operat-
ing parameters and Lgpogt Value.

1. Choose desired Vgart, VouT Tas and gyt operating con-
dition ranges for the application.

2. Determine if Vgar and Vgt ranges fit the boost operat-
ing range based on the T, range over Vgat and Vot
chart. If the operating ranges are not met, modify the
operating conditions or use an external boost regulator.

3. Determine if the desired ambient temperature (T,) range

fits the ambient temperature operating range based on
the T, range over Va1 and Vgt chart. If the tempera-

ture range is not met, modify the operating conditions
and return to step 2, or use an external boost regulator.

4. Determine if the desired output current (IgyT) range fits
the output current operating range based on the IgyT
range over Vgat and Voyt chart. If the output current
range is not met, modify the operating conditions and
return to step 2, or use an external boost regulator.

5. Find the allowed inductor values based on the Lggpost
values over Vgat and Vgout chart.

6. Based on the allowed inductor values, inductor dimen-
sions, inductor cost, boost efficiency, and Vg ppg,

choose the optimum inductor value for the system. Typi-
cal values for boost efficiency and Vg pp g are provided
in the Efficiency vs Vgat and VRippLE VS VeaT Charts.
In general, if high efficiency and low Vg pp| g are most
important, then the highest allowed inductor value
should be used. If low inductor cost or small inductor
size are most important, then one of the smaller allowed
inductor values should be used. If the allowed induc-
tor(s) efficiency, VgppLE, COSt, or dimensions are not
acceptable for the application, then an external boost
regulator should be used.
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15.3.3  Voltage Monitoring

Power Supply and Monitoring

The device has two circuits for detecting voltages that deviate from the selected threshold on the external digital / analog sup-

plies:

m Low-Voltage Interrupt (LVI) — The LVI circuit generates an interrupt when it detects a voltage below the set value.

m High-Voltage Interrupt (HVI) — The HVI circuit generates an interrupt when it detects a voltage above the set value.

The basic block diagram of voltage monitoring is shown in Figure 15-4.

Figure 15-4. Voltage Monitoring Block Diagram
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15.3.3.1

The LVI circuit generates an interrupt when it detects a volt-
age below the set value. These low-voltage monitors are off
by default, but the trip level for the LVI can be set in the reg-
ister RESET_CRO from 1.7 V to 5.45 V in steps of 250 mV.

Low-Voltage Interrupt

The LVI circuit has a persistent status register bit in
RESET_SRO that is set until cleared by the user by reading
from the register. Note that the LVI status bits in
RESET_SRO will be reset to ‘0’ when a device reset occurs
due to a POR, LVI, or HVI condition. This bit is useful only
when the LVI is configured as an interrupt source because
an LVI reset also clears this bit. This bit is set whenever the
voltage goes below the set value. There is distinct monitor-
ing for low voltage on the analog and digital supply. The
analog low-voltage interrupt (LVIA), enabled by
RESET_CR1[1] and RESET_CROQ[7:4], sets the LVIA
threshold. The digital low-voltage interrupt (LVID), enabled
by RESET_CR1[0] and RESET_CRO[3:0], sets the LVID
threshold. Apart from this, when the voltage monitoring is
enabled and the corresponding PRES bit is also enabled in
RESET_CR3J7:6], the low-voltage condition triggers a cor-
responding reset. Both the LVIA and LVID resets are
enabled by default. Note that the LVI reset will continuously
occur as long as the LVI voltage condition persists. The user
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code configures the LVI for reset. When low-voltage condi-
tion occurs after this configuration is done, the device is
reset once and the user code starts executing from flash
address zero. Again, when the CPU reaches the code that
configures LVI for reset and the voltage is still low, the
device will be reset again. This continuous cycle of device
reset occurs until the low-voltage condition is no longer
present.

The interrupt is generated only when the corresponding bit
in the RESET_CR1 register is set and the corresponding
bits in RESET_CR3[7:6] cleared. Even if the interrupt output
is not used to generate a processor interrupt, the status reg-
isters are updated by the circuit whenever LVI functions are
enabled. In addition, the real-time status of each LVI circuit
is available and captured in a real-time status register bit in
RESET_SR2, so you can determine if an under/over voltage
condition is still in effect. Similar to the reset condition, the
LVI interrupt is continuously triggered until the voltage goes
above the low-voltage trip point.

The low-voltage detect (LVD) events, comprising LVIA and
LVID, can also be used to cause a device to wake up from
sleep or standby modes. When the Vddx (Vdda and/or
Vddd) drops below the threshold, an interrupt is generated
on wakeup. The interrupt is generated due to the LVD status

131



Power Supply and Monitoring

bits being set in the RESET_SRO register. In sleep mode, if
the Vddx drops to the LVI trip point threshold, the device will
wake up but may not always generate an interrupt due to
the LVD status bits not being set. There is no effect on CPU
or other subsystem performance. See the device datasheet
for information on the voltage threshold settings.

15.3.3.2

The HVI circuit generates an interrupt when it detects a volt-
age above the fixed, safe operating value of 5.75V on the
external analog supply. There is just one HVI for both analog
and digital supplies. The selection between monitoring the
digital or analog supply is done by the RESET_CR1J[3] bit,
the default selection is for the Vdda supply. These high-volt-
age monitors are off by default, but this feature can be
enabled in the register RESET_CR1[2].

High Voltage Interrupt

The HVI circuit has a persistent status register bit in
RESET_SRO that is set until it is cleared by the user by
reading or writing to the register. Note that the HVI status
bits in RESET_SRO will be reset to ‘0’ when a device reset
occurs due to a POR, LVI, or HVI condition. This bit is useful
only when the HVI is configured as an interrupt source
because an HVI reset also clears this bit. This bit is set
when the analog voltage value goes beyond the threshold
value. Note that the HVI reset will continuously occur as
long as the HVI voltage condition persists. The user code
configures the HVI for reset. When high-voltage condition
occurs after this configuration is done, the device is reset
once and the user code starts executing from flash address
zero. Again, when the CPU reaches the code that config-
ures HVI for reset and the voltage is still high, the device will
be reset again. This continuous cycle of device reset occurs
until the high-voltage condition is no longer present.

The interrupt is generated only when the corresponding bit
in the register RESET_CR1[2] is unmasked. Even if the
interrupt output is not used to generate a processor inter-
rupt, the status registers are updated by the circuit when-
ever HVI functions are enabled. In addition the real-time
output of each HVI circuit is available and captured in a real-
time register bit in RESET_SR2, so you can determine if an
overvoltage condition is still in effect. Similar to the LVIA/
LVID events, HVIA event is also available in active and
standby modes. The HVIA interrupt can return the chip to
active mode from standby mode. Similar to the reset condi-
tion, the HVI interrupt is continuously triggered until the volt-
age goes below the high-voltage trip point.

15.3.3.3  Processing a Low/High Voltage
Detect Interrupt

Both LVI and HVI circuits cause the same interrupt output
signal, which is made available to the Interrupt Controller.
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Further execution of the interrupt depends on the enable
status for the interrupt line in the Interrupt Controller. After
the interrupt occurs, the user code can interrogate status
registers to determine which LVI or HVI circuit detected an
under- or over-voltage condition.

The actual interrupt output (LVD) is an OR function of the
three persistent status register bits corresponding to LVI-D,
LVI-A, and HVI. Therefore, to clear the interrupt, the ISR
must clear these three register bits.

The LVI and HVI interrupts are prone to a glitch when they
are enabled. Exercise caution in the firmware to avoid any
interrupt generated by the voltage detection circuitry at the
moment when voltage detection is being enabled. One way
to achieve this is by disabling the LVD interrupt before
enabling the voltage detection and enabling it after some
time, which avoids the potential glitch caused while
enabling.

During sleep mode, LVI and HVI circuits may be buzzed
(periodically activated). If an interrupt occurs during buzzing,
the system will first go through its wakeup sequence; then
the interrupt is recognized and serviced.

With the LVI configured as an interrupt, if the low-voltage
condition and a soft reset (such as software reset, watchdog
reset, segment reset) occur simultaneously, there is a
chance that the low-voltage condition persists when the
device resets due to the soft reset source. This will result in
the low-voltage condition causing a hard reset as well. If a
hard reset occurs, it results in the clearing of the soft reset
status register bits in RESET_SRO and RESET_SR1. The
implication is that any soft reset occurring in conjunction
with the LVI interrupt event will not be properly reflected in
the RESET_SRO, RESET_SR1 status registers. However,
there will be no impact on any other device operation; the
device will undergo the normal sequence after the reset
occurs. This behavior is applicable for the HVI interrupt as
well.
15.3.3.4  Reset on a Voltage Monitoring
Interrupt

The ALVI and DLVI can be configured to directly reset the
device by setting the corresponding bits in
RESET_CR3J[7:6]. When this bit is set to ‘1’ along with the
RESET_CR1[0/1] set to ‘1’, the corresponding LVI becomes
an additional reset source through the PRES reset path.
When this bit is cleared to ‘0’ along with the RESET_CR1[0/
1] set to ‘1, the corresponding LVI is only used as an inter-
rupt source. If the RESET_CR1[0/1] is cleared to ‘0’, the bit
state (either a zero or a one) has no impact on the reset or
interrupt functionality.
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The LVI glitch mentioned in 15.3.3.3 Processing a Low/High
Voltage Detect Interrupt triggers a system reset if the LVI
monitor is enabled after enabling the LVI reset (the LVI reset
is enabled by default). To avoid this, disable the LVI reset by

clearing the corresponding bits in RESET_CR3[7:6] before

enabling the LVI monitor.

15.4 Register Summary

Table 15-2. Power Supply Register Summary

Power Supply and Monitoring

Note that the LVI reset will not hold the device in reset until
the voltage goes above the set value. When the LVI circuit
detects a low voltage, reset is asserted. The reset is then
released even if the voltage is still below the LVI set value.

Register Function
PWRSYS_CRO Regulator control
PWRSYS_CR1 Analog regulator control
BOOST_CRO Boost Thump, voltage selection and mode select
BOOST_CR1 Boost enable and control
BOOST_CR2 Boost control
BOOST_CR3 Boost PWM duty cycle
BOOST_SR Boost status
RESET_CRO LVI trip value setting
RESET_CR1 Voltage monitoring control
RESET_SRO voltage monitoring status
RESET_SR2 Real-time voltage monitoring status
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The PSoC® 5LP devices feature a set of four power modes with a goal of reducing the average power consumption of the

device.

16.1

The PSoC 5LP power mode features, in order of decreasing
power consumption, are:

Features

Active
Low Power Active
Alternative Active
Sleep

Hibernate

Active and alternative active are the main processing
modes, and the list of enabled peripherals is programmable
for each mode. The user can enter Active or Alternative
Active manually or automatically alternate between them
using Low Power Active (LPA) mode. LPA mode uses the

Internal Low Speed Oscillator (ILO) and the Internal Main
Oscillator (IMO) to schedule the alternation.

Sleep and hibernate modes are used when processing is
not necessary for an extended time. All subsystems are
automatically disabled in these two modes, regardless of the
settings in the active template register. Some subsystems
have an additional available bit [PM_Avail_CRX] that can
mark a subsystem as unused and prevent it from waking
back up. This reduces the power overhead of waking up the
part, in that not all subsystems are repowered.

The allowable transitions between power modes are illus-
trated in Figure 16-1.

Figure 16-1. State Diagram of Allowable Power Mode Transitions

Manual

Alternate
Active
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The various power modes reduce power by affecting the fol-
lowing resources:

m  Regulators for the digital and analog supply in the device

m  Clocks such as the IMO, ILO, and external crystal oscil-
lator (ECO32K, ECOM)

m Central processing unit (CPU) and all other peripherals

Table 16-1. Power Consumption-Reducing Modes
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Power savings, resume time, and supported wakeup
sources depend on the particular mode. The four global
power-reducing modes are described in Table 16-1 and are
listed in decreasing order of power consumption.

Power Modes Description Entry Condition

Wakeup Source Active Clocks Regulator

Primary mode of opera-
tion, all peripherals avail-
able (programmable)

Wakeup, reset, manual

Active )
register entry

All regulators available.
Digital and analog regula-
tors can be disabled if
external regulation used.

. Any (programmable)
Any interrupt

Similar to Active mode,
and is typically config-
ured to have fewer
peripherals active to
reduce power. One pos-
sible configuration is to
use the UDBs for pro-
cessing, with the CPU
turned off

) Manual register entry
Alternate Active

All regulators available.
Digital and analog regula-
tors can be disabled if
external regulation used.

) Any (programmable)
Any interrupt

All subsystems automati- | \anyal register entry

Both digital and analog

regulators buzzed.

Comparator, PICU, ILO/kHZECO

regulators disabled,
except hibernate regula-
tor is enabled
Configuration and mem-
ory contents retained

Sleep cally disabled 2 a Digital and analog regula-
I°C, RTC, CTW tors can be disabled if
external regulation used.
All subsystems automati-
cally disabled
Lowest power consum-
'”glmOds W'tth alllperlph— Manual register entry Only hibernate regulator
Hibernate eras and intermna Comparator, PICU2 active.

a. On PSoC 5LP, an interrupt signal coming from a wakeup source should not be passed through the "Edge Detect" logic shown in Figure 7-2 on page 74. The
interrupt signal should be passed directly to the interrupt controller. This is a requirement only for sleep and hibernate power mode wakeup sources. Alternate
active mode wakeup sources can have their interrupt signals either passing directly to the interrupt controller, or through the edge detect logic.

16.2 Active Mode

Active mode is the primary power mode of the PSoC device.
This mode provides the option to use every possible sub-
system/peripheral in the device. All of the clocks in the
device are available for use in this mode.

Each power-controllable subsystem is enabled or disabled
in active mode, using the active power configuration tem-
plate bits [PM_ACT_CFGx registers]. This is a set of 14 reg-
isters in which each bit is allocated to enable/disable a
distinct power controllable subsystem. When a subsystem is
disabled, the clocks are gated and/or analog bias currents
are reduced.

Firmware may be used to dynamically enable or disable
subsystems by setting or clearing bits in the active configu-
ration template. It is possible for the CPU to disable itself,
while the rest of the system remains in active mode. The
CPU active mode bit is not sticky; therefore the CPU is
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always awakened whenever the system returns to active
mode.

16.2.1

Any wakeup event, any reset, or writing 0 into
PM_MODE_CSR[2:0] register while in alternate active
mode transitions the device into active mode. When a
wakeup event occurs in alternate active/sleep/hibernate
mode, the global mode always returns to active and the
CPU is automatically enabled, regardless of its template set-
tings. Active mode is the default global power mode upon
boot.

Entering Active Mode

16.2.2

A register write into PM_MODE_CSR[2:0] can transition to
another mode. Firmware must ensure the SPC Idle bit in the
SPC_SRJ[1] register is '1' prior to writing to the

Exiting Active Mode
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PM_MODE_CSR[2:0] register to ensure any SPC com-
mands have completed. Any pending wakeup source pre-
vents the device from exiting active mode.

16.3 Alternative Active Mode

Alternative active mode is similar to active mode in most of
its functionality. Alternative active mode also has its own
additional set of subsystem template bits
[PM_STBY_CFGx], which determine whether a subsystem
is enabled or disabled. This mode is made available for
quick transitions between active and an alternate low-power
mode.

For example, you can write to the template bits to disable
CPU and enable certain peripherals to operate in alternate
active mode. While in alternate active mode, if any interrupt
is generated, the device automatically transitions to active
mode and begins executing the firmware in active mode.

16.3.1

To enter alternative active mode, write into
[PM_MODE_CSR]. Firmware must ensure the SPC Idle bit
in the SPC_SR[1] register is '1' before writing to the
PM_MODE_CSR[2:0] register.

Entering Alternative Active Mode

The essential difference between active and alternative
active mode is that the device cannot wake up from sleep/
hibernate mode into the alternative active mode.

16.3.2

Any interrupt or write to the [PM_MODE_CSR] register can
return the system to active mode.

Exiting Alternative Active Mode

16.4 Sleep Mode

Sleep mode powers down the CPU and other internal cir-
cuitry to reduce power consumption. System supervisory
services, such as the central timewheel, RTC, and WDT
remain active.

When a wakeup event occurs, the system reactivates in a
single phase and returns to active mode. The analog and
digital LDO regulators are disabled during sleep mode. If the
core supplies are configured for internal regulation, a weak
keeper is used to hold the external capacitors at 1.8 VV (hom-
inal). Both regulators can be periodically activated (buzzed)
to provide supervisory features for voltage monitoring and
brownout detect (LVI, HVI, and PPOR). Buzzing is not
required if these supervisory services are not used.

The buzz rate is programmable using the {PWR-
SYS.BUZZ_TR} register. The response time of the LVI, HVI,
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and PPOR depends on the buzz rate. Selecting a higher
buzz rate improves the response time at the cost of
increased average power consumption. If the keepers are
disabled, then the buzz rate should be set high enough to
ensure that the external capacitors remain within a tightly
bound voltage range. It is not fatal if the capacitor dis-
charges below the desired voltage boundary. However, this
increases wake time because the LDOs must charge the
capacitor before it can enter active mode.

16.4.1

Sleep mode is entered by writing the appropriate code into
PM_MODE_CSR[2:0]. Firmware must ensure the SPC Idle
bit in the SPC_SRJ[1] register is '1' before writing to the
PM_MODE_CSR[2:0] register. Entry must be from a state
where the CPU is available (active). The system ignores any
request to enter sleep mode for the first 1 ms after POR.

Entering Sleep Mode

16.4.2

Only PICU interrupts, comparator wakeup, supervisory
interrupts, or resets wake up the system. At wakeup, the
system activates all previously available domains from
active mode template and begins executing the firmware in
active mode.

Exiting Sleep Mode

16.5 Hibernate Mode

Hibernate mode consumes/dissipates the lowest power, and
nearly all internal functions are disabled. There is no buzz-
ing, and the external capacitors are permitted to discharge.
The hibernate-regulator is always active to generate the
keep-alive voltage (Vyurka) Used to retain the system state.
See 15.3.3 Voltage Monitoring on page 131.

Configuration state and all memory contents are preserved
in hibernate mode. GPIOs configured as digital outputs
maintain their previous values, and pin interrupt settings are
preserved. The voltage used to retain state is lower than the
nominal core voltage.

In hibernate mode, voltage is monitored with a lower degree
of precision than in the other power modes. The hibernate
mode has a higher probability of having soft errors. Hence
for safety critical applications the MFGCFGPWR-
SYS.HIB.TR1[7] can be programmed to prevent hibernate
mode. When this bit is asserted, the command to hibernate
will put the system into sleep mode. This is important when
there are chances of an accidental entry into hibernate
mode and the watchdog is disabled.

To achieve an extremely low current, a hibernate regulator
with limited capacity is used. This limits the frequency of any
signal present on the input pins - no GPIO should toggle at a
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rate greater than 10 kHz while in hibernate mode. Because
hibernate mode is intended to implement a dormant state in
the application, this is not a practical limitation. Any system
that has signals toggling at high rates in low-power modes
can use the sleep mode without seeing a significant differ-
ence in total power consumption.

16.5.1

Hibernate mode is entered by a write into
PM_MODE_CSR[2:0]. Firmware must ensure the SPC Idle
bit in the SPC_SR[1] register is '1' before writing to the
PM_MODE_CSR[2:0] register. The extremely low current
hibernate regulator requires at least 1 ms to start up after a
reset. During this time, the system ignores requests to enter
hibernate mode.

Entering Hibernate Mode

16.5.2

Return from hibernate mode can occur only in response to a
PICU, comparator, or reset event. The digital, analog, and
sleep regulators are disabled in hibernate mode. Upon
wakeup, the system activates all previously available
domains, unless the {PM_MODE_CFG1[2]} field is set.

Exiting Hibernate Mode

16.6

The PSoC power manager provides timers to facilitate
advanced power management. Each of these timers are
clocked off the low-speed clocking resources available on
the chip: the ILO and 32-kHz crystal oscillator. Both of these
oscillators have startup times associated with them. Ensure
that firmware driven timer initialization occurs quickly after
reset.

Timers

The output of these oscillators is considered unreliable dur-
ing the specified startup time. User code should be authored
to ensure that this unreliable clocking is accounted for. The
best way to achieve this is to keep the timer disabled during
the startup period. For the central timewheel, fast time-
wheel, and one pulse-per-Second timers, this is achieved
with the associated enable bits in the PM.TW_CFG2 regis-
ter. For the Watchdog timer, this is achieved with a watch-
dog clear followed by a watchdog reset enable (see the
Watchdog Timer chapter on page 141).

The ILO is automatically started upon power up and wake
from hibernate. The ILO and 32-kHz crystal oscillator may
also be stopped and restarted by user firmware. In this case,
the user code must also account for oscillator startup time.

Timers and timewheels schedule events. They can be pro-
grammed to generate periodic interrupts for timing or to
wake the system from a low-power mode.
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16.6.1 Central Timewheel (CTW)

The central timewheel (CTW) is a 1-kHz, free-running, 13-bit
counter clocked by the ILO. The CTW is always available,
except in hibernate mode and when the CPU is stopped dur-
ing debug on-chip (DoC) mode. The main functions of the
CTW are:

m Buzzing during sleep mode

m  Waking up the device from a low-power mode
m  Watchdog timer (WDT)

m  General timing purposes

CTW settings are
PM_TW_CFG1[3:0].

programmable, using

Although the CTW is free-running, separate settings are
used for the wakeup and watchdog timeouts. The CTW can
be programmed, using the {PM_TW_CFGZ2[2]} registers, to
wake the system periodically and optionally issue an inter-
rupt by programming the bit {PM_TW_CFG2[3]}.

16.6.2  Fast Timewheel (FTW)

The fast timewheel (FTW) is a 100-kHz, 5-bit counter
clocked by the ILO, which can also be used to wake the sys-
tem from alternative active mode only. The FTW settings are
programmable, using PM_TW_CFGO0[4:0]; the counter auto-
matically resets when the terminal count is reached. The
FTW enables flexible, periodic wakeups of the CPU at a
higher rate than the rate allowed using the CTW. To wake
up on the FTW, write into register PM_TW_CFG2[0]. If the
associated FTW interrupt is enabled using
PM_TW_CFG2[1], an interrupt is generated each time the
terminal count is reached.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



A
(e

-

16.7

CYPRESS

EMBEDDED IN TOMORROW

Register List

Table 16-2. Low-Power Modes Register List

Low-Power Modes

Register Name

Description

General Registers

PM_ACT_CFGx

Active mode template

PM_STBY_CFGx

Alternate Active mode template

PM_AVAIL_CRx

Available settings for limited Active mode transition

PM_AVAIL_SRx

Availability Status register

PM_MODE_CFGO

Not used

PM_MODE_CFG1

Interrupt and settings for low-power modes

PM_MODE_CSR

Power Mode Control and Status register

PM_INT_SR Power Mode Interrupt Status register
PM_TW_CFGO Fast Timewheel (FTW) Configuration register
PM_TW_CFG1 Central Timewheel (CTW) Configuration register
PM_TW_CFG2 Configuration settings for CTW and FTW

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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The watchdog timer (WDT) circuit automatically reboots the system in the event of an unexpected execution path. This timer
must be serviced periodically. If not, the CPU resets after a specified period of time. After the WDT is enabled, it cannot be
disabled except during a reset event. This is done to prevent any errant code from disabling the WDT reset function. To use
the WDT function, enable the WDT function during the startup code.

17.1 Features

The WDT has the following features:
Protection settings to prevent accidental corruption of the WDT

Optionally-protected servicing (feeding) of the WDT

A configurable low-power mode to reduce servicing requirements during sleep mode
A status bit for the watchdog event that shows the status even after a watchdog reset

17.2 Block Diagram

Figure 17-1 is a block diagram of the WDT circuit.
Figure 17-1. Watchdog Timer Circuit

2.048 sec - 3.072 sec

1024 Ticks

256 ms — 384 ms

128 Ticks

Il

Watchdog
> Counter

32ms—-48ms J (3 Counts)

Watchdog Reset

16 Ticks ‘

4ms—-6ms PM_WDT_CFG[L:0]

ILO 2 Ticks

Clear Enable
1 kHz ‘

Central Timewheel

PM_WDT CR  PM_WDT_CFG[4]
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17.3 How It Works

The WDT circuit asserts a hardware reset to the device after
a preprogrammed interval, unless it is periodically serviced
in firmware. The system restarts if an unexpected execution
path is taken through the code and the preprogrammed
interval times out. It can also restart the system from the
CPU halt state.

The WDT timeout is between two and three programmable
tap periods, based on the free-running Central Timewheel.
See the PSoC® 5LP Registers TRM (Technical Reference
Manual).

Each time the central timewheel crosses the programmed
tap point, the Watchdog counter increments. When the
counter reaches three, a Watchdog reset is asserted, and
the counter is reset. When the WDT is serviced in software,
the counter is reset to zero.

The time between servicing and the first tap crossing is usu-
ally less than the complete tap period; therefore, program
the software to service the WDT within two tap periods.
Actual WDT timeouts may differ slightly from nominal,
caused by inaccuracy of the ILO frequency.

17.3.1 Enabling and Disabling the WDT

The WDT is enabled by setting the PM_WDT_CFGJ4] regis-
ter bit. After this bit is set, it cannot be cleared again except
by a reset event. This is done so that errant code cannot
accidentally disable the watchdog.

You must either re-enable the Watchdog function at startup
after a reset occurs or include code to re-enable the function
should a reset occur, allowing a dynamic choice whether to
enable the Watchdog.

A status bit (RESET_SRO[3]) becomes set on the occur-
rence of a Watchdog reset. This bit remains set until cleared
by the user, by reading or writing to the register, or until a
POR reset. All other resets leave this bit untouched.

17.3.2  Setting the WDT Time Period and

Clearing the WDT

Select a tap from the central timewheel using the register
PM_WDT_CFGJ1:0]. Based on the tap selected, the WDT is
timed at various periods, shown in Figure 17-1 on page 141.
The WDT counts until reaching three, based on the tap from
the central timewheel. If the firmware does not clear the
WDT before this time, a Watchdog reset is initiated.

To prevent an automatic reset, the WDT must be periodi-
cally serviced by firmware. In the default mode, this is
accomplished by writing any value to the PM_WDT_CR
field. It is a good idea to service the WDT in a firmware main

142

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

loop, that is, not in an interrupt handler. If the WDT is ser-
viced in an interrupt handler, and the main loop code goes
astray, the WDT may never generate a reset because the
interrupt may still be active, causing the interrupt handler to
continue to service the WDT.

17.3.3

A configurable low-power mode of the WDT reduces servic-
ing requirements during sleep mode. The register
PM_WDT_CFGJ6:5] governs the low-power mode for the
WDT.

Operation in Low-Power Modes

If the WDT is enabled, two bits define how the WDT
behaves when the part enters Sleep/ldle/Hibtimers (low-
power) mode. The default is 01; the system will automati-
cally use the longest WDT interval when Sleep/Idle/Hibtim-
ers mode is entered, so software is not burdened with
waking just to feed the WDT. This is true regardless of the
value programmed in the wdt interval register. Upon
wakeup, the interval will remain at the highest setting until
the WDT is fed the first time. A feeding at this point will
cause the interval to automatically return to the normal set-
ting (value in wdt_interval). If this field is set to NOCHANGE
('00", the system does not change the interval and does not
feed the WDT when entering Sleep/ldle/Hibtimers mode. If
DISABLED (wdt_Ipmode=11), the WDT is turned off when
Sleep/ldle/Hibtimers mode is entered and remains disabled
until the first feeding by the user after active mode is reen-
tered.

17.3.4  Watchdog Protection Settings

Using the MLOGIC_SEG_CR and MLOGIC_SEG_CFGO
registers, the WDT registers are protected from accidental
corruption as follows:

m Clear, low-power enable, and Watchdog enable regis-
ters are protected as segment 0 as one-time system set-
tings.

m  The servicing of WDT clear is protected in segment 1 as
a reconfigurable system setting.

See 20.3 Configuration Segment Protection on page 168.

17.4

Table 17-1. Reset Register List

Register List

Register Name Comments

PM_WDT_CFG Configuration register for Watchdog
PM_WDT_CR Watchdog clear
RESET_SRO Persistent Status register for Watchdog reset
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PSoC® 5LP architecture supports several types of resets, enable power-on reset, user-supplied external or software resets,

and recovery from errant code operation.

18.1

PSoC 5LP supports a number of hard and soft resets. Hard
resets such as power-on reset completely reset the device.
Soft resets are similar but do not reset certain register bits;
see the Register TRM for details.

Reset Sources

Resets sources include:
m |IPOR (hard): power-on reset

m PRES (hard): internal regulators low-voltage monitor
reset

m  HRES (hard): supply low-voltage monitor reset for sleep
and hibernate modes

XRES (hard): external source activates reset pin

LVI (soft): supply low-voltage monitor for active mode,
can generate interrupt or reset

SRES (soft): software reset, by setting a register bit
WRES (soft): watchdog reset

18.1.1

PSoC 5LP provides a number of power supply voltage mon-
itor reset sources.

Voltage Monitor Resets

18.1.1.1 Initial Power-On Reset (IPOR)

At initial power on, IPOR monitors the supply voltages
Voo Vopa: Veep: and Veea. The trip level is not precise. It
is set to approximately 1 volt, which is below the lowest
specified operating voltage but high enough for the internal
circuits to be reset and to hold their reset state. The monitor
generates a reset pulse that is at least 150 ns wide. It may
be much wider if one or more of the voltages ramps up
slowly.

In addition to power-on, all hard resets start an IPOR
sequence.

The analog and digital regulator trim is forced when the
IPOR circuit is in reset to provide the regulator a known trim
value while the NVLs are loading. The IPOR asserts during
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power up until VDDA’ VDDD‘ VCCA‘ and VCCD are above the
IPOR threshold. It also asserts for several hundred nano-
seconds after the asserting edge of a PRES or XRES event.
A small excursion on Vca Or Veep may be seen due to this
IPOR pulse.

18.1.1.2 Precise Low-Voltage Reset (PRES)

This circuit monitors the Vcx outputs of the analog and dig-
ital regulators. The regulator outputs are compared to a pre-
cise reference voltage. Software can disable the analog
regulator, which also disables the analog portion of PRES.
The digital portion of PRES cannot be disabled.

PRES disabled automatically in sleep and hibernate modes,
with one exception: During sleep mode the regulators are
periodically activated (buzzed) to provide supervisory ser-
vices and reduce wakeup time. At these times PRES is also
buzzed to allow periodic regulator monitoring.

18.1.1.3

These circuits detect when Vppa and Vppp go below a pro-
grammable voltage, and generate either an interrupt or a
reset. See section 15.3.3 Voltage Monitoring on page 131
for details.

Low-Voltage Interrupt/Reset (LVI)

18.1.1.4  Hibernate Reset (HRES)

During hibernate and sleep, an ultra-low-power supply mon-
itor circuit is used to issue a reset if the voltage on the exter-
nal digital supply drops to the point that SRAM and register
state information may be lost.

See the Power Supply and Monitoring chapter on page 125
for details on the configuration of the LVI and HVI reset
sources.

18.1.2  External Reset (XRES)

External reset is available on a dedicated XRES pin on
some devices, as well as a shared GPIO pin P1[2] on all
devices. The shared pin supports low pin count parts that do
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not have a dedicated XRES pin. The shared pin is available
through a programmable NV latch setting, and is configured
during the boot phase immediately after power-up. See the
Nonvolatile Latch chapter on page 85 for details.

The external reset is active low; an internal pull-up resistor is
provided for both dedicated and shared pins. Either pin (if
P1[2] is configured) holds the part in reset while the pin is
held low.

XRES is active during sleep and hibernate modes.

18.1.3  Software Initiated Reset (SRES)

Software initiated reset (SRES) is a mechanism that allows
a software-driven reset. The RESET_CR2 register forces a
device reset when a ‘1’ is written into bit 0. This setting can
be made by firmware or with a DMA.

The RESET_SRO[5] status bit is set by a software reset.
This bit remains set until cleared by the user or until a hard
reset.

18.1.4  Watchdog Reset (WRES)

The watchdog timer (WDT) detects errant code by causing a
reset if the watchdog timer is not cleared within the user-
specified time limit. See the Watchdog Timer chapter on
page 141.

Enable the WDT by setting the PM_WDT_CFGI4] register
bit. After this bit is set, it cannot be cleared again except by
areset event.

The RESET_SRO[3] status bit is set by a watchdog reset.
This bit remains set until cleared by the user or until a hard
reset.

18.1.5

When the device comes out of reset, it is beneficial to know
the cause of the reset. This is achieved in the device
through the registers RESET_SRO and RESET_SR1.

Identifying Reset Sources
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These two registers have specific status bits allocated for
the various reset sources, except POR and XRES. The bits
are set on the occurrence of the corresponding reset, and
remain set after the reset, until cleared by the user or a
device reset occurs due to one of the below mentioned
sources.

The RESET_SRO register contains status bits for all soft
reset sources. The register also has two general-purpose
bits. These bits are persistent through soft resets. They can
be cleared by firmware, or by a hard reset.

18.1.5.1 Preservation of Reset Status

The device reset caused due to XRES, IPOR, PRES, LVI,
and HVI sources clear the contents of the RESET_SRO0 and
RESET_SR1 registers. These sources are referred to as
hard reset sources because they reset all the registers. The
remaining reset sources, which include software reset,
watchdog reset, and segment reset preserve the status of
the RESET_SRO and RESET_SR1 registers. For example,
if an LVI reset and a software reset occur simultaneously,
the LVI reset will clear the status bit corresponding to the
software reset, making it impossible to detect a software
reset condition. Also, the status bits corresponding to PRES,
LVI, and HVI in RESET_SRO and RESET_SR1 registers are
meaningless because the respective reset conditions are
hard resets, which clear all the register bits. The status bits
corresponding to LVI and HVI will however be required when
they are configured as interrupt sources instead of reset
sources.

Note PSoC Creator reads and preserves the RESET_SRO
register during boot before executing the code in main().
Refer to the “Preservation of Reset Status” section of the
PSoC 3/PSoC 5LP System Reference Guide for more infor-
mation.
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18.2 Reset Diagram

Figure 18-1 is a simplified logic diagram of the RESET module. Any active source of reset will make the system reset.

Figure 18-1. Logic Diagram of the RESET Module
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Figure 18-2 shows the operation of various RESETs with the change in Vdd/Vcc. The diagram also shows the functioning of
RESETSs in a normal power-up.

Figure 18-2. Resets Resulting from Various Reset Sources
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18.3 Reset Summary

All reset sources and their triggers/effects are described in Table 18-1 and Table 18-2.

Table 18-1. Reset Sources and Triggers

POR WRES SRES XRES
Trigger Veeg <1.6 V WDT not written in time window | RESET_CR2[0] set | External XRES pin active
Enable by Default? Yes No No Yes (nonvolatile latch setting)
Block Power 50 pA <1 pA 0 0
Sleep Mode Operation | Buzzed Not in Hibernate No Yes
Table 18-2. Reset Effects
2 fa) fa)
o] w w o
b | o | 2 2 G < -
7 < = = < i W =
& 9 o] = @ ® 3 ®
RESET TYPE s u o E e = S iy
= o Q 0 - =, o O
%] > > (%) < s =
> z ] 4 3 x
o fa) i N 2 o
3 S o &

IPOR (Digital and Analog, Internal and External)
PRES (Digital and Analog)

reset_hard (hard reset) X X X X X X X X
XRES (JTAG disabled or hibernate mode)

Hibernate Reset (HBR)

Software Reset (SWR)
Watchdog Reset (WDR)
XRES (JTAG enabled)
reset_all  (soft reset) X X X X
checksum reset (CKSUMR)

Segment Reset (SEGR)

Power Domain Reset

Notes

m PRES, LPCOMP, and HBR can be disabled through RESET_CR4 and RESET_CRS register settings, but generate resets
by default.

m JTAG is enabled if customer NVL setting in CNVL_DPS[1:0] is set or if Port 1 pins are actively configured to JTAG.
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18.4 Boot Process and Timing

Reset

The boot process trims and configures the silicon to its ideal state before the first line of the user code is executed. The
PSoC® 5LPlife cycle consists of reset, boot, and user phases. Figure 18-3 gives a brief view of these phases.

Figure 18-3. Boot Process

Boot

Configuration loaded
from reserved area in
Flash.
Debug port acquire
happens here

Reset

Holds the part in reset
until the operating
conditions are stable NV
Latch configuration

happens here

User Mode

CPU active Start running code from
Address0.
Loads configuration based on PSoC
creator generated code

The process from supply voltage stabilization to user code
entry is shown in Figure 18-4. After the voltage is high
enough, the NVL data load is initiated. The NVL load takes
care of loading configuration data stored in the NV latches.
The maximum time for this NVL load is 10 us from the time
of initiation. This resets the 1/Os to the NVL drive mode set-
tings as well as setting the other Configuration data for the
device. At this point, the device enters the reset state. The
two types of NVL loads are explained in 18.4.1 Manufactur-
ing Configuration NV Latch.

If the external reset pin (XRES) is asserted low, the device
stays in the reset state. If the external reset pin (XRES) is
not asserted and all the voltages are at their correct operat-
ing values, it triggers the reset hold off circuitry to bring the
device out of the reset state.

The IMO clock is then started in a fast IMO (FIMO) mode,
which is a faster startup version of the IMO. The reset hold-
off counter continues to hold the device in reset until other
systems, such as band-gap and precision resets stabilize.
The length of the hold off is approximately 20 us to allow
enough time for these circuits to stabilize. If the band-gap or
precision reset blocks are not ready or there is a problem
with any of these devices stabilizing by the end of the hold-
off counter, a fresh reset cycle is initiated and the hold-off
counter is restarted. If there are no problems, the hold-off
counter completes and the device is released from reset.

After releasing from reset, the IMO is switched to either
12 MHz or 48 MHz, the system bus clock is started and the
boot cycle begins. Until now, the bus clock is fed from the
FIMO, which has lesser accuracy compared to the IMO.
After the reset is released, it moves into the IMO, which is
more precise. The boot phase is explained in section 18.4.3
User Mode. During this boot configuration time, if there is no
toggling of the external pins P1_0 and P1_1 and the config-
uration finishes, the system moves into the user mode. Tog-
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gling P1_0 and P1_1 implies a debug port acquire is being
attempted which must trigger a debug port entry.
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Figure 18-4. Power Up Reset Boot User Mode Cycle
Internal Reset Boot User Mode
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XRES
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BG + Precision RESET,

READY

System_resets

clk_bus

S e e SRS Qe

Boot Configuration Data

Checksum Done

Configuration reads, Configuration write:

Boot Window Open/

In this phase, two types of NV latches are loaded to set
reset states and trims in the device. The two types of the
configuration, explained in sections 18.4.1 Manufacturing
Configuration NV Latch and 18.4.1.1 Device Configuration
NV Latch, occur simultaneously in the reset phase.

18.4.1  Manufacturing Configuration NV

Latch

There are some circuits that must receive part specific trim
values before the device comes out of reset. Manufacturing
NV latches provide these trim values. An example of this cir-
cuit is the power-on-reset. This circuit is responsible for
holding the device in reset until a safe supply voltage is
reached. The POR circuit requires a trim value, which is
stored in an NV latch. The NV latch's output is stable at
approximately 1 V while the lowest operating voltage in the
PSoC® 5LPplatform is 1.71 V.

18.4.1.1

Device configuration is similar to manufacturing configura-
tion NV in that it occurs while the device is in reset; however,
it differs in that customers select optional configuration set-
tings not trim values for circuits. Manufacturing configuration
and device configuration occur in parallel. One example of a
device configuration is the NV latches that determine the 1/O

Device Configuration NV Latch
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drive modes during reset, which determine the reset state of
the drive mode registers.

18.4.2

Though many device settings are done using NV latch dur-
ing the preboot process, there are other trim values that
require to be written during the boot process. These values
are stored in reserved space in the flash memory (I/O
System chapter on page 151) and the boot process takes
care of moving this data to the corresponding blocks. This
loading of the configuration happens using the DMA and
PHUB. A DMA channel fetches the configuration bytes from
the flash and places them in the SRAM. This move to SRAM
causes indeterminate data to be present in SRAM
addresses 0 through 127 after boot is complete. The check-
sum block does a checksum to determine integrity. After the
data is verified, it is then transferred using the DMA to the
corresponding configuration register. If the checksum fails, it
triggers a system reset.

Boot Phase

Note that some circuits have mode dependent trim values,
for example the IMO's trim value depends on the speed set-
ting of the IMO. For circuits with mode dependent trim val-
ues, the boot process loads the trim value that matches the
default mode. When the user's firmware or configuration
changes the mode, the firmware also retrieves the correct
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trim value corresponding to the modes from the tables
stored in flash and writes them to the appropriate register.

The CPU halts until boot completes, therefore, you cannot
use the CPU to complete the boot process. The PHUB,
DMA, and a special checksum block are used to move the
manufacturing configuration data from the flash to the
appropriate registers. These three blocks work together to
accomplish these objectives:

m  Minimize boot time, giving you the quickest path to firm-
ware execution

m Provide a data integrity check on the manufacturing con-
figuration data

Reset

m Provide flexibility in the order and addresses to which
manufacturing configuration data is written

When the boot process is complete, the device enters the
user mode where the user code starts executing.

18.4.3 User Mode

When the boot phase is complete, the device enters the
user mode to enable firmware code execution. This is where
code execution starts for the startup/configuration code
developed by PSoC Creator. Only after executing this part
of the PSoC Creator generated code does the code execu-
tion reach the main().

18.5 Register List
Table 18-3. Reset Register List
Register Name Comments
RESET_CR2
RESET_SRO Persistent status bits for WRES, SRES, XRES, and so on
RESET_SR1 Persistent status bits for Segment reset, PRES
RESET_SR2 Real-time Reset Status
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The I/O system provides the interface between the CPU core and peripheral components to the outside world. The flexibility
of PSoC® devices and the capability of its I/O to route any signal to any pin greatly simplifies circuit design and board layout.
There are two types of 1/O pins on every device, general purpose I/0 (GPIO) and special I/O (SIO); those with USB provide a
third type. Both GPIO and SIO provide similar digital functionality. The primary differences are their analog capability and
drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as spe-
cialized general purpose capability.

All' /O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all /O pins
can generate an interrupt. All GPIO pins can be used for analog input, CapSense®, and LCD segment drive, while SIO pins
are used for voltages in excess of Vdda and for programmable output voltages and input thresholds.

19.1 Features

The PSoC I/0 system has these features, depending on the pin type.

Supported by both GPIO and SIO pins:

m  User programmable I/O state and drive mode on device reset
m  Flexible drive modes

Support level and edge interrupts on pin basis

Slew rate control

Supports CMOS and low voltage TTL input thresholds
Separate port read and write registers

Separate 1/O supplies and voltages for up to four groups of /O

Provided only on the GPIO pins:
Supports LCD drive

Supports CapSense

Supports JTAG interface

Analog input and output capability
8 mA sink and 4 mA source current

Ports can be configured to support EMIF address and data

Provided only on SIO pins:

Hot swap capability (5 V tolerance at any operating Vqq)

Single enable and differential input with programmable threshold
Regulated output voltage level option

Overvoltage tolerance up to 5.5V

Higher drive strength than GPIO

25 mA sink and 4 mA source current
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USBIO features:
m  USB 2.0 compliant I/O
m 25 mA source/24 mA sink current

19.2 Block Diagrams

Figure 19-1, Figure 19-2 on page 153, and Figure 19-3 on page 153 are block diagrams of three main categories of I/Os:
GPIO, SIO, and USBIO, respectively. Each diagram emphasizes the main blocks that drive the system, as well as the signals
and register settings that control the main blocks.

Figure 19-1. GPIO Block Diagram

Digital Input Path Naming Convention

PRT[X]CTL ‘x’ = Port Number
PRT[X]DBL SYNC IN ‘y’ = Pin Number

PRT[x]PS
<: Digital System Input T
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Interrupt
Logic
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Digital Output Path
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Figure 19-2. SIO Block Diagram

Digital Input Path

Naming Convention
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Figure 19-3. USBIO Block Diagram
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19.3 How It Works

PSoC 1/Os provide:

Digital input sensing

Digital output drive

Pin interrupts

Connectivity for analog inputs and outputs
Connectivity for LCD segment drive and EMIF

Access to internal peripherals:

o Directly for defined ports

o Through the universal digital blocks (UDB) via the
Digital System Interconnect (DSI)

The I/Os are arranged into ports, with up to eight pins per
port. Some of the I/O pins are multiplexed with special func-
tions (USB, debug port, crystal oscillator). Special functions
are enabled using control registers associated with the spe-
cific functions. For example, the Crystal Oscillator control
register enables the crystal oscillator function for the 1/0 pin
multiplexed with the crystal oscillator function.

Table 19-1. 1/O Drive Modes
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19.3.1

Because of the variety of I/O capabilities, it is necessary to
understand the modes thoroughly and the configuration for
each function.

Usage Modes and Configuration

19.3.2 I/0 Drive Modes

Each GPIO and SIO pin is individually configurable into one
of the eight drive modes listed in Table 19-1 and shown in
Figure 19-4, which depicts a simplified pin view based on
each of the eight drive modes.

The I/O pin drive state is based on the port data register
value (DR) or on a DSI signal, if bypass mode is selected.
The actual I/O pin voltage is determined by a combination of
the DR value, the selected drive mode, and the load at the
pin. The state of the pin can be read from the Port Status
register (PS) or routed to a DSI signal, or both. Three config-
uration bits are used for each pin (DM[2:0]) and set in the
PRTxDMJ[2:0] registers. When the drive mode of a pin is
changed, it is possible that the input buffer may be turned-off
for a short period during the drive mode transition. There-
fore, pin interrupts should be disabled while changing pin
configuration.

Mode . PRTxDM2 PRTxDM1 PRTxDMO

s Drive Mode o or S Data =1 Data =0
0 High Impedance Analog 0 0 0 High Z High Z
1 High Impedance Digital 0 0 1 High Z High 2
2 Resistive Pull Up 0 1 0 Res 1 (5k) Strong 0
3 Resistive Pull Down 0 1 1 Strong 1 Res 0 (5k)
4 Open Drain, Drives Low 1 0 0 High Z Strong 0
5 Open Drain, Drives High 1 0 1 Strong 1 High Z
6 Strong Drive 1 1 0 Strong 1 Strong 0
7 Resistive Pull Up and Down 1 1 1 Res 1 (5k) Res 0 (5k)
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I/O System

Figure 19-4. 1/O Drive Mode Diagram
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The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register

(when HW connection is disabled).

The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected.

The ‘An’ connection connects to the Analog System.

19.3.2.1

The factory drive mode default is high impedance analog
mode, which is appropriate for most designs. The Drive
Mode on Reset feature allows the user to change the factory
default to any of the four listed drive modes if the application
requires faster configuration to low or high logic levels. The
Reset drive mode is set at POR release. The Drive Mode on
Reset setting is a port wide setting and is not set per pin.
Each pin is individually configured during the device configu-
ration step after POR release; this setting overwrites the
reset drive mode. The Resistive Pull Up Drive Mode on
Reset also sets the Port Data Register to OxFF to ensure the
port is pulled up; all other modes leave the Data Register
0x00.

m High impedance analog

Drive Mode on Reset

m High impedance digital
m Resistive pull up

m Resistive pull down

See the Nonvolatile Latch chapter on page 85 for details.

19.3.2.2

High Impedance Analog mode is the default reset state;
both output driver and digital input buffer are turned off. This
state prevents a floating voltage from causing a current to

High Impedance Analog
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flow into the 1/O digital input buffer. This drive mode is rec-
ommended for pins that are floating or that support an ana-
log voltage. High impedance analog pins cannot be used for
digital inputs. Reading the pin state register returns a 0x00
regardless of the data register value.

To achieve the lowest device current in sleep modes, all I/
Os must either be configured to the high impedance analog
mode, or they must have their pins driven to a power supply
rail (ground) by the PSoC device or by external circuitry.

19.3.2.3

High Impedance Digital mode is the standard high imped-
ance (High Z) state recommended for digital inputs. In this
state, the input buffer is enabled for digital signal input.

High Impedance Digital

19.3.2.4  Resistive Pull Up or Resistive Pull

Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for digital input and output in these modes. Interfacing to
mechanical switches is a common application for these
modes. If a pull up is needed with the Resistive Pull Up
Drive mode, a 1 must be written to that pin’s Data Register
bit. If a pull down is required with the Resistive Pull Down
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Drive mode, a 0 must be written to that pin’s Data Register
bit.
19.3.2.5 Open Drain, Drives High and Drives
Low

Open Drain modes provide high impedance in one of the
data states and strong drive in the other. Pins are used for
digital input and output in these modes. A common applica-
tion for these modes is driving 1°C bus signal lines.

19.3.2.6

The Strong Drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins must not be used as
inputs under normal circumstances. This mode is often used
to drive digital output signals or external FETSs.

Strong Drive

19.3.2.7

The Resistive Pull Up and Pull Down mode is a single mode
and is similar to the Resistive Pull Up and Resistive Pull
Down modes, except that, in the single mode, the pin is
always in series with a resistor. The high data state is pull up
while the low data state is pull down. This mode is used
when the bus is driven by other signals that may cause
shorts.

Resistive Pull Up and Pull Down

19.3.3

GPIO and SIO pins have fast and slow output slew rate
options for strong drive modes — not resistive drive modes.
The fast slew rate is for signals between 1 MHz and
33 MHz.

Slew Rate Control

Because it results in reduced EMI, the slow option is recom-
mended for signals that are not speed critical — generally
less than 1 MHz. Slew rate is individually configurable for
each pin and is set by the PRTXSLW registers.

19.3.4  Digital I/0O Controlled by Port

Register

The Port Control registers (see Table 19-2 on page 156)
have separate configuration bit for each port pins. In addi-
tion to port control registers, the device also provides regis-
ter for port-wide and pin wise configuration.

The port wide configuration register writes the same config-
uration for all the port pins in a single write. This is useful to
configure all the port pins to a specific configuration.

The pin wise configuration register writes to all configuration
bits for a specific I/O pin in a single write. This is useful to
configure individual port pins to a specific configuration.
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Outputs are driven from the CPU by writing to the port data
registers (PRTx_DR) Digital inputs are read by the CPU
through the pin state registers (PRTx_PS}).

19.3.4.1

Table 19-2 lists port control registers.

Port Configuration Registers

Table 19-2. Functional Registers Accessed through Pin and
Port Configuration Registers

Address Description
A bit set in this register connects the corresponding
PRT[0..11]_BYP port pin to the Digital System Interconnect (DSI),

and disconnects it from the DR register.

Each bit controls the output edge rate of the corre-
sponding port pin — fast edge rate mode (Slew=0) or
slow edge rate mode (Slew=1)

PRT[0..11]_SLW

Each bit set controls the bidirectional mode of the
corresponding port pin.

PRT[0.11]_BIE 0 = Output always enabled
1 = Output Enable controlled by DSI input
PRT[0..11]_PS This register reads the logical pin state for the corre-

sponding GPIO port.

The combined value of these registers —
PRTx_DM2, PRTx_DM1, and PRTx_DMO — deter-
mines the unique drive mode of each pin in a GPIO
port.

PRT[0..11]_DM[0..2]

Data written to this register specifies the high

PRT[0..11]_ DR (Data=1) or low (Data=0) state for the GPIO pin at
each bit location of the selected port.
19.3.4.2  Pin Wise Configuration Register

Alias

The port pin configuration registers (PRTxPCO through
PRTxPC7) access several configuration or status bits of a
single I/O port pin at once, as shown in Figure 19-5 on
page 157.

Figure 19-5 shows an example of a read from
{PRT*_PCJ4]}. Bit four of the port control registers associ-
ated with the port configuration register is read and driven
onto the data bus.
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Figure 19-5. Effect of a Read of the Pin Configuration Register {PRT*_PC[4]}
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
Data Register Bypass — (Port 3 BYP) Pin 7| Pin 6 | Pin 5 [ Pin 4| Pin 3 [Pin 2| Pin 1| Pin 0
Slow Slew Rate — (Port 3 SLW) Pin 7| Pin 6 | Pin 5 [ Pin 4 [ Pin 3 [Pin 2| Pin 1| Pin 0
Bidirectional Enable — (Port 3 BIE) Pin 7| Pin 6 | Pin 5| Pin 4 [ Pin 3 | Pin 2| Pin 1 | Pin 0
Pin Input State — (Port 3 PS) Pin 7 [ Pin 6 [ Pin 5| Pin 4 [ Pin 3 [Pin 2| Pin 1| Pin 0
Drive Mode 2 — (Port 3 DM2) Pin 7| Pin 6 | Pin 5  Pin 4 Pi}’i’ Pin 2| Pin 1| Pin 0
Drive Mode 1 — (Port 3 DM1) Pin 7| Pin 6| Pin 5 Pi% Pin 3|Pin 2| Pin 1| Pin 0
I
Drive Mode 0 — (Port 3 DMO0) Pin 7| Pin 6| Pin 5 F(in 4|Pin 3 [Pin 2[Pin 1| Pin 0
A1
Data Output — (Port 3 DR) Pin 7|Pin 6| Pin 5 Pb\zt Pin 3|Pin 2| Pin 1| Pin 0
Port Pin Configuration — Port 3, Pin 2 BYP |SLW| BIE | PS | DM2| DM1 | DMO | DR
19.3.4.3 Port Wide Configuration Register Figure 19-6. {PRT*.PRT} Write Example
Alias _
Write
The Port Configuration Register accesses several available Data bus
configuration registers on a port-wide basis with a single bit Y/
; write / 8
write. PRT[x].PRT
bit [1]

This register PRT*_PRT aliases a subset of the configura-
tion registers, allowing the user to configure a complete port
in a single write.

AT

PRT[].DMO | 7

bit [2]

FRTTTTAICNN

PRT[x].DM1 | 7

bit [3]
/1

PRT[x].DM2 | 7

bit [5]

AT

PRT[x].BIE | 7

bit [6]

FITTITIRION

PRT[X.SLW | 7

bit [7]

FITITIT G

PRT[x].BYP | 7 0 |
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19.3.5 Digital /0 Controlled Through DSI

GPIO, USBIO, and SIO pins are connected to the internal
peripheral blocks through the UDB via the digital system
interconnect (DSI). Any peripheral connected to the UDB
can be connected to any I/O pin through the DSI.

Each port has 20 unique connections to the UDB through
DSI: eight inputs, eight outputs, and four output control sig-
nals.
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19.3.5.1 DSI Output

The bypass register {PRTx_BYP} selects either the selected
DSI output signal or the data register (PRTx_DR) to drive
the port pin.

Mapping of the DSI signal to the output pin is illustrated in
Figure 19-7 on page 158.

Together, output select registers PRTx_OUT_SEL1 and
PRTx_OUT_SELO select the DSI output signal to drive the
corresponding output port pin.

Figure 19-7. Digital System Input to Pad Selection

| | | || |
) T
L4 33 234
T dx < 9 3
224 x& B2 x AT
= lﬁ. 'S o Lower Upper o x3X
9o ¢S Nibble Nibble S 2hbhx
c S5y DSI IN DSI IN lh 17 S0
|—| | wm m o C
o @ Mo - mw, -
T LU A /_/\ B ooomly
(== = B
DEeE Es o bm
S 5 3 T g9k
> 2 33 R
T3 dx % A 30
D4 x X 2 = 93
2= 2o vIvlvlv) wivlvlv) N
=iy 9 QuOwv QLOY Qb Ex
's @ ¢ I SENG S| S5 ¢ of
S 7! =R
C 31 n w | (e
= w m m vl S
lp © M - m ol
m - o o - 2}
mr- 935 ° ° ° ° =660m
E 2 B T ® ° | Ta °. ] o o o =
2N * * M e 't | T a2
~‘||—\_/T\__/T;_/\__/\__,\_ \__/f\_/—|||~
PRT[x]_DR[7:0] * T T T * T T |
f\__/ f\__/ f\__/ f\__/ f\__/ f\__/ f\__/ r\__/ Port Logic Control
PRT[x]_BYP[7:0} 73 ® ® ? ® ®
in in in in in in in in
GPIO | |GPIO| |GPIO| |GPIO| |GPIO| [GPIO| [GPIO| | GPIO
Px[0] Px[1] Px[2] Px[3] Px[4] Px[5] Px[6] Px[7]
19.3.5.2 DSI Input into a High Z output drive state with input buffer enabled.

The port pin input is directly connected to the UDB array
through DSI for routing the input to various internal periph-
eral blocks. The control for these port inputs are at the DSI
inputs. See the Universal Digital Blocks (UDBs) chapter on
page 175 for port-to-DSI connections.

19.3.5.3 DSl for Output Enable Control

High-speed bidirectional capability is provided through the
{PRT*_BIE} register. When this mode is enabled and the
auxiliary control signal is high, the 1/0 pin immediately goes
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When this signal is low (or returns low), the 1/0 pin assumes
the pin state configured through the {PRT*_DM[2]},
{PRT*_DM[1]}, and {PRT*_DMI][O]} registers. This allows fast
turnaround of the 1/0 pin. Four DSI control signals are avail-
able for dynamic drive control of the pins. Mapping of the
DSI control signal to port pin output enable is shown in
Figure 19-8 on page 159.

Together, dynamic output enable select registers
PRTx_OE_SEL1 and PRTx_OE_SELO select the DSI con-
trol signal for each port pin.
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Figure 19-8. Mapping of DSI Control Signal to Port Pin Output Enable
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19.3.6  Analog I/O

The only way that analog signals can pass to and from the
PSoC core is through GPIO.

To connect a pin to an internal analog resource through ana-
log global bus or analog mux line, each GPIO connects to
one of the analog global lines and to one of the analog mux
lines. The switches that connect the I/O pin to Analog global
lines and analog mux line are configured by the {PRT*_AG}
and {PRT*_AMUX} registers.

See the Analog Routing chapter on page 319 for a descrip-
tion of the analog global network configuration. Selected
pins provide direct connections to specific analog features,
such as DACs or uncommitted opamps.

For analog I/O pins, the drive mode should be configured to
High Z Analog in most situations, which disables the input
buffer. The input buffer can also be disabled using the port
input disable (PRTx_INP_DIS) register. The buffer should
remain enabled to allow simultaneous use of the pin as a
digital input and analog input or output.

19.3.7 LCD Drive

All GPIO pins can be configured for LCD drive capabilities.
{PRT*_LCD_EN} registers are used to enable individual
pins for LCD drive. {PRT*_LCD_COM_SEG} registers are
used to select whether a pin is set as a common or segment
drive pin.

In LCD mode, the GPIO pins are configured into a High Z
output mode, allowing the LCD drivers to control the pin
state.

19.3.8 CapSense

All GPIO pins can be used to create CapSense buttons and
sliders. The primary analog bus for CapSense is the AMUX-
BUS, which has two nets (AMUXBUSL and AMUXBUSR)
for two simultaneous sensing operations. These can also be
shorted to form a single net that connects to all GPIOs. See
the CapSense chapter on page 359 for more information.
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19.3.9

The EMIF uses the port interface and the UDB to connect to
external memory. When in EMIF mode, the ports directly
pass to the pads the address and data out from the PHUB.
Data reads from the EMIF pass through the port to the
PHUB. See the EMIF chapter on page 97 for more informa-
tion.

External Memory Interface (EMIF)

19.3.10 SIO Functions and Features

GPIO and SIO provide similar digital functionality. The pri-
mary differences are in their analog capability and drive
strength. This section describes adjustable input and output
level and hot swap features that are available only with SIO.

19.3.10.1 Regulated Output Level

SIO port pins support the ability to provide a regulated high
output level. This can be useful for interfacing to external
signals with voltages lower than the SIO Vygj,- This regu-
lated output sets the Vg, for the SIO pair. The SIO are
grouped into pairs. Each pair shares the same reference
generator, thus the regulated output level applies for both
pins.

Configuration is provided for each SIO pair through the
{PRT*_SIO_CFG} registers, as shown in the following table.

Table 19-3. SIO Input and Output Configuration
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Figure 19-9. SIO Configuration Diagram
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19.3.10.2 Adjustable Input Level

SIO pins support a differential input mode with programma-
ble thresholds. The SIO pair input buffer voltage levels are
set by the vref_sel and wvtrip_sel bits of the
{PRT*_SIO_DIFF} register. See the following table.

Table 19-4. SIO Differential Input Buffer Reference Voltage

Selection
vref_selly] vtrip_selly] Mode Description
0 0 0.5 x vddio
0 1 0.4 x vddio
1 0 0.5 x vohref
1 1 vohref

vreg_enly] ibuf_sel[y] Mode Description

0 0 Single Ended Input Buffer
Non-Regulated Output Buffer

0 1 Differential Input Buffer
Non-Regulated Output Buffer

1 0 Single Ended Input Buffer
Regulated Output Buffer

1 1 Differential Input Buffer
Regulated Output Buffer

Figure 19-10. SIO Reference Voltage
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19.3.10.3 Hot Swap

SIO pins support hot swap capability. It is possible to con-
nect to another system without loading the signals con-
nected to the SIO pins and without applying power to the
PSoC device.

The unpowered PSoC device can maintain a high imped-
ance load to the external device while preventing the PSoC
device from being powered through a GPIO pin’s protection
diode.

19.3.11 Special Functionality

Special purpose capability may uniquely exist on some pins
such as:

4 to 25 MHz crystal input and output

32 kHz crystal input and output

Test modes

1’c

SPI

CAN

Table 19-5. Fixed Pin Assignments

I/O System

m USB

Special functions and peripherals such as 1°c, crystal oscil-
lators, USB, XRES, JTAG TAP, SWD, high-current DAC out-
puts, Vrer inputs, and high drive analog output buffers have
fixed pin assignments.

The I12C block supports three pin assignment options: SIO
pin pair P12[0:1], SIO pin pair P12[4:5], or any GPIO / SIO
pin pair routed via the DSI.

System reset (XRES, active low, resistive pull up) functional-
ity is supported on either the dedicated XRES pin or the
P1[2] GPIO. The IEEE 1149.1 JTAG TAP five pin interface
may be enabled on the P1[0:1,3:5] pins.

Serial wire debug is supported over the USBIO pins
(P15[6:7]) or the same pins as TMS / TCK (P1[0:1]). Analog
function fixed pin assignments include two pairs of VIDAC
outputs to support high-current mode, two Vrgg inputs, and
four sets of analog output buffer pins. The “left side” VIDAC
and analog buffer pins are assigned to port 0 and are avail-
able on all package options. The “right side” VIDAC and lin-
ear buffer pins are assigned to port 3 and are available on
all package options.

Function Signal Name Pad # NF:r?e Pad Type | TQPF 100 | QFN68 | 99 CSP Comment
SCL 4 P12[4] SIO 4 3 H6
SIO pair on Vio2
) SDA 5 P12[5] SIo 4 K7
1-C
SCL 61 P12[0] SIO 53 38 C3
SIO pair on Vio3
SDA 62 P12[1] SIO 54 39 c4
Xo 49 P15[0] | GPIO/ Xtal 42 27 D1
MHz ECO
Xi 50 P15[1] | GPIO/ Xtal 43 28 D2
Xo 62 P15[2] | GPIO/ Xtal 55 40 E3
32 kHz ECO
Xi 63 P15[3] | GPIO/ Xtal 56 41 E4
D+ 39 P15[6] USBIO 35 22 G2
FS USB
D- 40 P15[7] USsBIO 36 23 F2
19 XRES XRES 15 10 - Fixed function XRES/TSTRST pin
XRES XRES
26 P1[2] GPIO 22 13 H3 XRES/TSTRST
T™MS 24 P1[0] GPIO 20 11 H4
TCK 25 P1[1] GPIO 21 12 J3
|IEEE 1149.1
ITAG TAP TDO 26 P1[3] GPIO 23 14 J2
TDI 28 P1[4] GPIO 24 15 G4
nTRST 29 P1[5] GPIO 25 16 G3
24 P1[0] GPIO 20 11 H4 SWD on GPIO pins option
SWDIO
39 P15[6] USBIO 35 22 G2 SWD on USB pins option
Serial Wire 25 P1[1] GPIO 21 12 J3 SWD on GPIO pins option
Debug SWDCK
40 P15[7] USsBIO 36 23 F2 SWD on USB pins option
SWO 27 P1[3] GPIO 23 14 J2
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Table 19-5. Fixed Pin Assignments (continued)
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Function Signal Name Pad # NF;?ge Pad Type | TQPF 100 QFN68 | 99 CSP Comment
AbufferoL 82 PO[6] GPIO 78 55 B9
VIDAC High Cur- AbufferlL 83 PO[7] GPIO 79 56 D8
rent Output AbufferoR 51 P3[0] GPIO a4 29 c1
AbufferlR 52 P3[1] GPIO 45 30 c2
£ tormal Vief Extref0 78 PO[3] GPIO 74 51 D6
Extrefl 53 P3[2] GPIO 46 31 D3
Abufo+ 77 PO[2] GPIO 73 50 A8
Abufo- 78 PO[3] GPIO 74 51 D6
Abufoout 76 PO[1] GPIO 72 49 c6
Abufi- 55 P3[4] GPIO 48 33 B4
Abufl+ 56 P3[5] GPIO 49 34 A2
Analog Linear Abuflout 58 P3[6] GPIO 51 36 B2
Output Buffer Abuf2+ 80 PO[4] GPIO 76 53 D7
Abuf2- 81 PO[5] GPIO 77 54 E7
Abuf2out 75 PO[0] GPIO 71 48 B6
Abuf3- 53 P3[2] GPIO 46 31 D3
Abuf3+ 54 P3[3] GPIO 47 32 D4
Abuf3out 59 P3[7] GPIO 52 37 B3

19.3.12

Care must be taken not to lose the current configuration dur-
ing reconfiguration of pins when the device is connected
directly to a digital peripheral. The 1/O pins should hold their
current configurations during a reconfiguration. If the ports
are driven by the data registers, configuration maintenance
is automatic.

I/0O Port Reconfiguration

However, if the ports are bypassed and driven by the DSI,
the current value must be read and written to the data regis-
ter {PRT*_DR}) before initiating reconfiguration. Saving of
the current configuration occurs as follows:

1. The software reads the GPIO / SIO pin state,
{PRT*_PS}.

2. The software writes this value into the data registers,
{PRT*_DR}.

3. 1/O ports driven by the DSI must be driven by the data
register by de-asserting the bypass register value,
{PRT*_BYP}.

At this point, it is safe to reconfigure the device. When

reconfiguration is complete, the 1/O sources can be driven

by the DSI by setting the {PRT*_BYP} register value.

19.3.13 Power Up I/O Configuration

By default, all I/Os power up in a known state, either driving
a 0, driving a 1, or set to High Z. Input buffers are disabled
during power up. The value set in the nonvolatile (NV)
latches determines the value driving each port.
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A pair of NV latches is associated with each 1/O port; these
latches serve two functions:

m Latch values configure the pins on a port-wide basis dur-
ing power up.

m Latch values load reset values for the drive mode and
data registers to correctly configure the port, when
IPOR_disabled is deasserted.

See the Nonvolatile Latch chapter on page 85 for more
information.

If the NVLs are set to 0x00 for the port, by default all 1/0s
reset to the High Impedance Analog state but are repro-
grammable on a port-by-port basis. They can be reset as
High Impedance Analog, Pull Down, or Pull Up, based on
the requirements of the application.

19.3.14 Overvoltage Tolerance

All' /O pins provide an overvoltage (Vqdio < Vin < V4da) toler-
ance feature at any operating voltage. Limitations include
the following:

m  No current limitations for the SIO pins, because they
present a high impedance load to the external circuit.

m  GPIO pins must be limited to 100 pA, using a current
limiting resistor. Outside the current limitation, GPIO pins
clamp the pin voltage to approximately one diode above
the Vygio SUppIy.
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A common application for this feature is connection to a bus
such as 1°C, where different devices are running from differ-
ent supply voltages. In the I2C case, the PSoC device is
configured into the Open Drain, Drives Low mode using an
SIO pin. This allows an external pull up to pull the 12C bus
voltage above the pin’s Vg, supply. For example, the PSoC
device can operate at 1.8 V, and an external device can run
from 5 V. The SIO pin’s V|, and V,_levels are determined by
the associated Vygio SUpply pin.

The 1/0O pin must be configured into a High Impedance drive
mode, Open Drain Low mode, or Resistive Pull Down mode,
for overvoltage tolerance to work properly.

Absolute maximum ratings for the device must be observed
for all /0O pins.

19.3.15

The Vygio SUpply must be less than or equal to the voltage
on the device's Vyq, pin. This feature allows users to pro-
vide different I/O interface levels for different pins on the
device. See the datasheet to determine V44, Capability for a
given device and pin.

I/O Power Supply

SIO port pins support an additional regulated high output
capability, as discussed in 19.3.10.2 Adjustable Input Level.

19.3.16 Sleep Mode Behavior

The GPIO/SIO pad will maintain the current pin state during
sleep modes. Port pin interrupts remain active in all sleep
modes, allowing the PSoC device to wake from an exter-
nally generated interrupt.

19.3.17 Low-power Behavior

In all low-power modes, I/O pins retain their states until the
part is awakened and changed or reset. To awaken the part,
use a pin interrupt, because the port interrupt logic contin-
ues to function in all low-power modes.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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19.4

This section describes the functions of the port interrupt
controller unit (PICU) for PSoC 1/0.

Port Interrupt Controller Unit

19.4.1

The features of the PICU are as follows:

Features

m All eight pins in each port interface with their own PICU
and associated interrupt vector

m Pin status bits provide easy determination of interrupt
source down to the pin level
Rising/falling/either edge interrupts are handled
Pin interrupts can be individually enabled or disabled
Interfaces to the PHUB for read and write into its regis-
ters

m Sends out a single interrupt request (PIRQ) signal to the
interrupt controller

19.4.2

Figure 19-11 is a block diagram of the PICU showing the
function of control signal generation and data manipulation
blocks. These blocks send appropriate control signals to
interrupt-generating pin logic blocks, simultaneously record-
ing these signals in status and snap registers.

Interrupt Controller Block Diagram
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Figure 19-11. PICU Block Diagram
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19.4.3  Function and Configuration

Each pin of the port can be configured independently to gen-
erate interrupt on rising edge, falling edge, or either edge.
Level sensitive interrupts are not directly supported. UDB
provides this functionality to the system when needed. This
configuration is done by writing into the interrupt type regis-
ter corresponding to each pin. The sequence is as follows:

1. Depending on the configured mode for each pin, when-
ever the selected edge occurs on a pin, its correspond-
ing status bit in the status register is set to ‘1’, and an
interrupt request is sent to the interrupt controller.

2. Status bits that have ‘1’ are cleared upon a read of the
status register. Other bits of the status register can still
respond to incoming interrupt sources.

3. Ifaninterrupt is pending, and the status register is being
read, all of the incoming events on the same interrupt
source (GPIO) are blocked until the read is complete.
However, all of the other interrupt sources that were not
pending an interrupt in status register are not blocked.

4. Each PICU has a wakeup_in input and a wakeup_out
output signal. The wakeup_in signal in a PICU is ORed

together with other pin interrupts to generate a
wakeup_out signal, as shown in Figure 19-11.

All of the PICUs are daisy chained together to generate
a final wakeup signal that goes to the power manager.
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19.5

Registers shown in Table 19-6 are associated with a single
1/0 port and are specific to both the GPIO and SIO ports.

Register Summary

Table 19-6. GPIO and SIO Port Registers

I/O System

Table 19-7 shows registers specific to a GPIO port.

Table 19-7. GPIO Registers

Address Description
Port-wide configuration register. This contains
{PRT*_CTL} the portEmifCfg[2:0] and port-wide vtrip_sel for

the corresponding GPIO register.

dynamic bidirectional mode at any pin.

The Port Input buffer disable allows the user to over-
ride the input buffer default drive mode settings.

Mask of which bits within the {PRT*_DR} and
{PRT*_PS} are accessible via read / writes to
{PRT* DR_ALIAS} and reads of {PRT* PS_ALIAS}.

{PRT*_INP_DIS}

{PRT* BIT_MSK}

The Analog global control enable register selects on a
pin-by-pin basis whether to connect the pin to the ana-
log global bus.

{PRT*_AG}

The Analog Global Multiplexer Register selects on a
pin-by-pin basis whether to connect the pin to the ana-
log mux bus.

{PRT*_AMUX}

The Port Configuration Register allows configuration
of several configuration bits of the entire I/O port simul-

*
{PRT*_PRT} taneously. This register aliases the port functional reg-
isters on a port-wide basis.
The Port Pin Configuration Registers ({PRT*_PC[0]
through {PRT*_PC[7]}) access several configuration or
{PRT*_PC*} status bits of a single I/O port pin simultaneously.

These registers alias the functional registers on a pin-
by-pin basis.

Aliased port data. Allows read / write access to
{PRT*_DR} if {PRT*_BIT_MSK} is set. Allows access
to all port data registers as a contiguous block simplify-
ing DMA access.

{PRT* DR_ALIAS}

Aliased port data. Allows read access to {PRT*_PS} if
{PRT*_BIT_MSK} is set. Allows access to all port state
registers as a contiguous block simplifying DMA
access.

{PRT* PS_ALIAS}

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

Address Description - -
The Port Data Output register sets the data output {PRT*_LCD_COM_SEG} Is_g:g%(;%rtnasozges\;veﬁgngﬁ;rehfcsg lﬁ:;ggﬁg? onor
{(PRT* DR} state for the corresponding GPIO port. It is aliased to -
- continuous address space in the PRT*_DR_ALIASED {PRT* LCD_EN} LCD enable, allows port pins not connected to
registers. - - LCD to be used for other functions.
The Port Pin State register reads the logical pin state
{(PRT*_PS} for the corresponding GPIO port. It is aliased to contin- Table 19-8 shows registers specific to an SIO port.
- uous address space in the PRT*_PS_ALIASED regis-
ters. i
- - Table 19-8. SIO Port Registers
The Port Drive Mode registers ({PRT*_DM[0]},
{PRT*_DM*} {PR;T*FDI\I/I/[C}]},_ and (PRT*_DM[2]}) specify the drive Address Description
mode for 1/0 pins.
Differential input buffer reference voltage
(PRT* SLW) The Ptort tSlew Control register sets the slew rate for {PRT*_SIO_DIFF} select, 2 bits per SIO pair.
- pin outputs.
Input buffer enable and Output buffer Configu-
{PRT* BYP} The Port Bypass register selects port output data from {PRT*_SIO_CFG} ra?ion, 2 bits per SIO pair. P 9
- either the data output register or digital global input.
. - {PRT*_SIO_HYST_EN} | Differential hysteresis enable.
(PRT* BIE} The Port Bidirectional Enable register enables

Registers shown in Table 19-9 involve DSI bit selection.
These registers are associated with all I/O ports and are
located within the port logic.

Table 19-9. DSI Selection Registers

Address

Description

{PRT*_OUT_SEL*%

Data output from UDB to Digital System Array
Input Select registers. There are two select
lines per port pin.

{PRT*_OE_SEL*}

UDB set dynamic Output Enable control select.
There are two select lines per port pin.

{PRT*_DBL_SYNC_IN}

The Port Double Sync In register enables syn-
chronization of the data in from the port before
driving the digital system interconnect (DSI) sig-
nals to the UDB.

{PRT*_SYNC_OUT}

The Port Sync Out register enables synchroni-
zation of the data in from the UDB digital sys-
tem interconnect (DSI) using the existing
{PRT*_DR} register.

Table 19-10 shows the register associated with the PICU.

Table 19-10. PICU-Associated Registers

Address

Description

{PICU*_INTTYPE*}

This register defines the interrupt type to config-
ure the pin interrupt — 1 register for each pin

{PICU*_INTSTAT}

Status register provides information on currently
posted interrupts — 1 register for each PICU

{PICU*_SNAP}

The Port Snapshot register provides informa-
tion on the state of the input pins at the most
recent read to the status (INTSTAT) register — 1
register for each PICU
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PSoC® 5LP devices offer a host of flash and configuration protection options and device security features that can be lever-
aged to meet the security and protection requirements of an application. These requirements range from protecting configura-
tion settings or flash data to locking the entire device from external access. The following section discusses in detail these
features together with their usage cases.

20.1 Flash Protection

The objective of flash protection is to prevent access or modification to the flash contents. The only nonvolatile (NV) storage
on a PSoC 5LP device that has protection options is the flash; there are no EEPROM and NV latch protection options. Flash
memory in PSoC 5LP architecture is organized as flash arrays. Depending on the flash memory size, there can be one or
more than one flash array. Each flash array can have a maximum of 256 rows. Each flash array row has 256 bytes of data.
PSoC 5LP architecture offer customers the ability to assign one of four protection levels to each row of flash in a device. For
each flash array, flash protection bits are stored in a hidden row in that array. In the hidden row, two protection bits per row are
packed into a byte, so each byte in the hidden row has protection settings for four flash rows. The flash rows are ordered so
that the first two bits in the hidden row correspond to the protection settings of flash row 0 (see Figure 20-1). See the Flash
Program Memory chapter on page 93 to learn more about flash memory organization in PSoC 5LP devices.

Figure 20-1. Flash Protection Bit Structure

Row 0 Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7
Bits [0:1] Bits [2:3] Bits [4:5] Bits [6:7] Bits [0:1] Bits [2:3] Bits [4:5] Bits[6:7] | T T T T T TTTT
N J N J
4 Vo
Byte 0 in Flash Hidden Row 0: Contains protection Byte 1 in Flash Hidden Row 0: Contains protection
bits for Flash rows 0 through 3 bits for Flash rows 4 through 7

Protection is cumulative in that modes have successively higher protection levels and include the lower protection modes.
Flash protection can only be set once. To change flash protection settings after they are set, the flash contents must be com-
pletely erased and reprogrammed, then the protection levels can be set again. See the Nonvolatile Memory
Programming chapter on page 423 for erasing and programming flash. Table 20-1 shows the protection modes.

Table 20-1. Flash Protection Modes

Mode Description In PSoC Creator Read?® | External Write? | Internal Write®
00 Unprotected U - Unprotected Yes Yes Yes
01 Read Protect F - Factory Upgrade No Yes Yes
10 Disable External Write R - Field Upgrade No No Yes
11 Disable Internal Write W - Full Protection No No No
a. Appliesto Test Controller and Read commands, and cache data fetches. Cache code fetches are always allowed.
b. Test controller/3rd party programmers.

c. Boot loading or writes due to firmware execution.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F 167



Flash, Configuration Protection

When a read/write/erase operation is done for a row, the
corresponding protection bits are checked. The command is
executed only if allowed under the current protection mode.
If the command is not allowed, then the command fails.

As shown in Table 20-1, four flash protection levels are
available for every row of flash in a device. A customer may
choose any one of these protection levels independent of
the protection choice for all other rows in the flash.

The following list provides a few additional details on the
features and use cases for each of these protection levels.
m 00 — No Protection

m 01 - Read Protect

No external device can read a flash block that is read
protected.

The SPC Read commands cannot be used to read a
block that is read protected.

Only the processor and the PHUB can access a block of
flash that is read protected.

Offers only read protection.
m 10 — External Write Protection

No external device can erase or write a row of flash that
is external write protected.
Includes all Read Protect restrictions.
Boot loaders work at this protection level.

m 11 — Fully Protected
The processor cannot erase or write a block of flash that
is fully protected.
Includes all protections from lower levels of flash data
protection.

This level is used when a block of flash should never be
modified by an internal process or external device.

Note that when the debug controller is enabled, it can read
the entire flash memory regardless of the flash protection
setting. Therefore, if flash protection is required, the debug
controller also needs to be disabled.

20.2

The objective of device security is to prevent the PSoC 5LP
device in an application from being used as a host to com-
promise the application. The device security feature is
enabled by writing to the Write Once (WO) latch.

Device Security

The WO latch is a type of nonvolatile latch. When the output
is ‘1’, the Write Once NVL locks the part out of Debug and
Test modes; it also permanently gates off the ability to erase
or alter the contents of the latch.

The user can write a correct 32-bit key (0x50536F43) into
the WO latch to disable the part from entering into Debug
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and Test modes. This precaution prevents anyone from
erasing or altering the content of the internal memory.

If the device is protected with a WO latch setting, Cypress
cannot perform failure analysis and, therefore, cannot
accept an RMA from customers. The WO latch is read out
via serial wire debug (SWD) to electrically identify protected
parts. The user writes the key in the WO latch to lock out
external access only if no flash protection is set. However,
after setting the values in the WO latch, a user still has
access to the device until it is reset. The output of the WOL
is only sampled upon reset. Therefore, you can write the key
into the WO latch, program the flash protection data, and
then reset the part to lock it.

See the Nonvolatile Memory Programming chapter on
page 423 for information about writing to the Write Once
(WO) nonvolatile latch.

20.3 Configuration Segment

Protection

Part of the PSoC platform’s value to customers is its ability
to change the functionality of the device in real time. Chang-
ing the functionality can be as simple as enabling an exter-
nal crystal or as dramatic as changing the functionality of
UDBs from timers to CRC generators. Based on the applica-
tion needs, the customer may also want to protect certain
Configuration registers.

Not all configuration registers need the same level of secu-
rity and protection. Hence, the configuration registers are
grouped into four segments, with registers assigned to a
segment based on the presumed application use cases. The
registers under each of the four segments are listed in
Table 20-3 to Table 20-6. The device registers that are not
listed in these tables do not have any segment protection.
This is to ensure that the protection logic is supported only
on important registers, thereby saving chip area where the
protection logic is not required.

Segment 0. One time system settings. This segment has
system registers that are configured only once during pro-
gram execution. The registers in this segment come under
the following broad categories:

Power System

Reset

m  Watchdog

m Internal low speed oscillator (ILO)

Segment 1. Reconfigurable system settings. This segment
has registers that can be reconfigured during program exe-
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cution. The registers in this segment come under the follow-
ing broad categories:

m LVI Detect
Voltage regulators
Power Manager
Wakeup Sources

Boost Converter

Segment 2. UDB array configuration registers.

m All UDB array configuration registers, such as the clock
selection and datapath input/output multiplexer selec-
tion, come under this segment.

Segment 3. Analog interface (Registers related to analog
interface configuration).

It must be noted that Segment O registers can be configured
either as the one time configurable or reconfigurable type.
The same applies to Segment 1 and Segment 2 registers as
well. But as a best practice, it is advisable to set Segment 0
registers as one time configurable. The settings for the rest
of the segments depend on application requirements. To
find out the segment to which a register is allocated, see the
segment field for the register in the PSoC® 5LP Registers
TRM (Technical Reference Manual).

Write access to the Configuration registers in various seg-
ments is enabled using the Segment Configuration register
(MLOGIC_SEG_CFGO0). Write access to the Segment Con-
figuration register (MLOGIC_SEG_CFGO0) is enabled using
the Segment Control register (MLOGIC_SEG_CR).

20.3.1  Locking/Unlocking Segment

Configuration Register

The 8-bit Segment Control register (MLOGIC_SEG_CR) is
used to control write access to the Segment Configuration
register (MLOGIC_SEG_CFGO0) bits. By default, write
access to the Segment Configuration register is disabled.
Attempted writes will appear to execute normally, but the
contents of the register will remain unchanged.

Segment configuration write access is enabled by writing
0xB5 to the Segment Control register and is disabled by
writing 0xB4 to the Segment Control register. Upon device
reset, the Segment Control register resets to the locked
state and disables write to the Segment Configuration regis-
ter.

When illegal values (values other then 0xB4 and OxB5) are
written to the Segment Control register, it causes a device
reset and is indicated by the Segment reset (SEGRS) bit in
Reset Status (RESET_SR1) register. The segment reset bit
remains set until cleared by the user or POR.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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20.3.2  Locking and Protecting Segments

The 8-bit Segment Configuration register
(MLOGIC_SEG_CFGO0) holds a pair of bits for each seg-
ment (Segment 0 to Segment 3) that are used to regulate
access to the Configuration registers in that segment. The
pair consists of one protect bit and one lock bit; these bits
operate independently of each other.

Protect Bit. The segment protect (LOCK_PROTECT_x) hit
controls the ability to write the segment’s lock bit.

If the segment protect bit is ‘0’, the segment’s lock bit can be
written as a ‘0’ or ‘1’ at anytime. If the protect bit is ‘1’, the
segment’s lock bit cannot be modified.

The segment protect (LOCK_PROTECT_Xx) bit is a write-tol
once bit. It cannot change from a ‘1’ to a ‘0’ except as a
result of a hardware reset, such as a POR or XRES. For one
time configuration of a segment, it must be locked and pro-
tected after configuration.

Lock Bit. The segment lock (LOCK_Xx) bit controls the write
access to the Configuration registers in the segment. Setting
the LOCK_x bit prevents write access to the Control regis-
ters; clearing the lock bit allows a write.

For dynamic configuration of a segment, it must not be pro-
tected and can be locked after every configuration.

Table 20-2 describes the behavior for different protect and
lock bit settings.

Table 20-2. Protect and Lock Bit Settings

Protect/Lock Bits Description

00b The Configuration registers are not protected and
not locked. They can be written at anytime.
The Configuration registers are not protected but
locked. This is used to temporarily lock the configu-

01b ; : h ; :
ration and is used in the case of dynamic reconfig-
uration.

10b The Configuration register are protected and not
locked. They can be written at anytime.

11b The Configuration registers are protected and
locked. This is used for one time configuration.
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Table 20-3. Segment 0: One Time System Settings Table 20-4. Segment 1: Reconfigurable System Settings
Category Register Names PHUB Address Category Register Names PHUB Address
RESET_CR3 0x46F7 RESET_CRO 0x46F4
RESET_CR4 0x46F8 LVI Detect RESET_CR1 0x46F5
RESET_CRS5 0x47F9 RESET_CR2 0x46F6
RESET_TR 0x46FB
Reset
RESET_IPOR_CRO 0x46F0 Volt Regulators PWRSYS_CR1 0x4331
RESET_IPOR_CR1 Ox46F1
RESET_IPOR_CR2 Ox46F2 PM_TW_CFGO 0x4380
RESET_IPOR_CR3 0x46F3 PM_TW_CFG1 0x4381
PM_TW_CFG2 0x4382
PWRSYS_HIB_TRO 0x4680 Power Manager PM_WDT_CR 0x4384
PWRSYS_HIB_TR1 0x4681 PM_MODE_CFGO 0x4391
PWRSYS_I2C_TR 0x4682 PM_MODE_CFG1 0x4392
PWRSYS_SLP_TR 0x4683 PM_MODE_CSR 0x4393
PWRSYS_BUZZ_TR 0x4684
PWRSYS_WAKE_TRO 0x4685 PM_WAKEUP_CFGO 0x4398
Power System Wakeup Sources
PWRSYS_WAKE_TR1 0x4686 PM_WAKEUP_CFG1 0x4399
PWRSYS_BREF_TR 0x4687
PWRSYS_BG_TR 0x4688 BOOST_CRO 0x4320
PWRSYS_WAKE_TR2 0x4689 BOOST_CR1 0x4321
PWRSYS_WAKE_TR3 0x468a Boost BOOST_CR2 0x4322
PWRSYS_CRO 0x4330 BOOST_CR3 0x4323
ILO_TRO 0x4690 FASTCLK_* 0x4200-0x42FF
ILO ILO_TR1 0x4691 Fast Clock IMO_* 0x46A0-0x46A7
SLOWCLK_ILO_CRO 0x4300 XMHZ_TR 0x46A8
Watchdog PM_WDT_CFG 0x4383 FLASH LPM CACHE_CR1 0x4801

Table 20-5. Segment 2: UDB Array

Category Register Names PHUB Address
) 0x10000-
UDB Config UCFG_* OX150FF

Table 20-6. Segment 3: Analog Interface

Category Register Names PHUB Address
Analog Interface Rout-
ing and Configuration 0x5800-0x5FFF
Registers

Analog Interface Trim

. 0x4600-0x467F
Registers
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20.3.3  Example

The device peripherals are enabled/disabled by the
PM_ACT_CFG* registers in Active mode. These registers
are mapped in Segmentl. The following steps explain the
procedure to configure these registers and then lock the
configuration information so that runaway code does not

Flash, Configuration Protection

protect bit for this segment, MLOGIC_SEG_CFGO[3], is
not set. If the protect bit has been set by the user, the
lock bit cannot be modified, other than by a device reset.

. Write to the Active Power Mode Template registers

(PM_ACT_CFG¥*) to enable/disable the required periph-

overwrite the values. erals.

4. Set the lock bit (MLOGIC_SEG_CFGO0[2]) and clear the
protect bit (MLOGIC_SEG_CFGO0I[3]) for Segment 1 in
the Segment Configuration register
(MLOGIC_SEG_CFGO).

5. Write 0xB4 to the Segment Control register to disable
the write access to the Segment Configuration register.

1. Write OxB5 to the Segment Control register
(MLOGIC_SEG_CR) to enable the write access to the
Segment Configuration register.

2. Clear the lock bit for Segment 1 to get write access to
the Configuration registers in Segment 1. This is done by
clearing the lock bit corresponding to Segment 1, which
is MLOGIC_SEG_CFGO0[2]. Here, it is assumed that the

20.4 Frequently Asked Questions About Flash Protection and Device
Security

Question 1. How do | decide on the flash protection level needed for the application?

The protection settings for flash memory must be set based on the following criteria:

m If the application warrants the need for a field upgrade, then set the Disable External Write mode for the flash rows that
are going to be updated in the field. This allows you to use the bootloader application to update the flash using communi-
cation interfaces such as 12C and USB.

m If the application code must be protected from being copied or modified to protect IP, the flash security level for the rows
containing the IP code must be set to Full Protection mode.

Question 2. Is it possible to modify the flash protection settings that have already been set?

It is not possible to directly alter the flash protection setting. The only way to change the flash protection settings is to com-
pletely erase the entire flash memory using the Erase All command, reprogram the flash memory, and then set the new pro-
tection settings. See the Nonvolatile Memory Programming chapter on page 423 to learn more about flash erase/program
commands.

Question 3. Is it possible to reprogram a flash memory that is configured with Full Protection?

The only way to reprogram the fully protected rows is to erase the entire flash memory using the Erase All command, repro-
gram the flash memory, and then set the new protection settings as described in Question 2 above.

Question 4. Is it necessary to enable protection for the entire flash memory, or only the for the region of flash memory that
the application uses?

It is sufficient to configure flash security for memory regions that are used by the application, leaving the unused locations
unprotected, provided that there is no possibility of the program execution going to the unprotected region. If there is a possi-
bility of code executing from the unprotected region (due to, for instance, function calls), malicious code can be written in the
unprotected region to read the flash data in the fully protected region. Remember that internal read is permitted in all protec-
tion modes; therefore, it is always a good practice to set protection for the entire flash memory.
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Question 5. Is it ever necessary to configure different protection settings for different memory regions?

Yes, depending on the application requirements. Different flash rows may need different protection settings. A typical exam-
ple is the case of field upgrade using the bootloader component. The portion of flash that needs to be upgraded in the field
with bootloadable code must be configured in External Write Protect mode. The remaining flash memory (base code or boot-
loader code, unused flash memory) can be set to Full Protection.

Question 6. Are flash protection settings obeyed in Debug mode?

The Read Protection setting is not obeyed in Debug mode, which means the flash memory can be read regardless of flash
protection setting. The Write Protection setting is still intact. Setting Full Protection makes it impossible to write to the flash
memory in Debug mode.

Because the Debug mode is used during the application development phase, there is no need to protect the flash. After the
application development phase is over, and code has been finalized, the user can disable the debug feature.

Question 7. What is device security?

Device security is the feature in PSoC 5LP architecture that prevents the device from entering Debug and Test modes. To
enable device security, write a 32-bit key (0x50536F43) into the Write Once (WO) latch. After writing this key, the device can-
not be reprogrammed by entering test mode. Entering debug mode while using JTAG boundary scan is also not possible.
This prevents external access to registers and nonvolatile memory. See Device Security on page 168 of this chapter to learn
more about device security.

Question 8. What are the risks associated with enabling device security?

If the device is protected with a WO latch setting, Cypress cannot perform failure analysis and, therefore, cannot accept
RMAs from customers. The WO latch can be read via the SWD to electrically identify protected parts.

Question 9. Are device security and flash protection interrelated or independent?

The answer is both. While flash protection settings and device security are configured independently, enabling device security
does not allow external read or write of flash memory, regardless of the flash protection settings. There is one important
exception. Even with device security enabled, it is still possible to update the flash memory using a bootloader application,
provided the flash memory is not fully protected.

Question 10. Is it possible to implement OTP (one time programmable) functionality such that flash content can never be
altered after it is programmed?

The Full Protection setting for flash memory, along with the device security feature can prevent the flash from ever being mod-
ified. This combination is the highest level of security setting available in PSoC 5LP devices. The steps to do this are given
below

1. Erase the entire flash memory using the Erase All command

Reprogram the flash content.

Write a 32-bit key (0x50536F43) into the WO latch to enable device security.
Set flash Protection setting to Full Protection.

ISl S

Reset the part to lock it.

172 PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



Section E: Digital System

&= CYPRESS

s EMBEDDED IN TOMORROW"

The digital subsystems of PSoC® 5LP architecture provides these devices their first half of unique configurability. The subsys-
tem connects a digital signal from any peripheral to any pin through the Digital System Interconnect (DSI). It also provides
functional flexibility through an array of small, fast, low-power universal digital blocks (UDBs).

PSoC Creator™ provides a library of pre-built and tested standard peripherals that are mapped onto the UDB array by the
tool (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on). Nonstandard peripherals are easily imple-
mented using a Hardware Description Language (HDL) such as Verilog. Each UDB contains Programmable Array Logic
(PAL) and Programmable Logic Device (PLD) functionality, together with a small state machine engine to support a wide vari-
ety of peripherals.

In addition to the flexibility of the UDB array, PSoC devices provide configurable digital blocks targeted at specific functions.
These blocks can include 16-bit timer/counter/PWM blocks, 12c slave/master/multi-master, Full Speed USB, and CAN 2.0b.
See the device datasheet for a list of available specific function digital blocks.

This section encompasses the following chapters:

Universal Digital Blocks (UDBs) chapter on page 175

UDB Array and Digital System Interconnect chapter on page 217

Controller Area Network (CAN) chapter on page 225

USB chapter on page 241

Timer, Counter, and PWM chapter on page 257

I2C chapter on page 273

Digital Filter Block (DFB) chapter on page 287
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This chapter shows how the PSoC® 5LP universal digital blocks (UDBs) enable the development of programmable digital
peripheral functions. The UDB architecture provides balance between configuration granularity and efficient implementation;
UDBs consist of a combination of uncommitted logic similar to programmable logic devices (PLDs), structured logic (data-
paths), and a flexible routing scheme.

21.1 Features

m  For optimal flexibility, each UDB contains several components:

o ALU-based 8-bit datapath (DP) with an 8-word instruction store and multiple registers and FIFOs
o Two PLDs, each with 12 inputs, eight product terms and four macrocell outputs

a  Control and status modules

a1  Clock and reset modules

PSoC 5LP contains an array of up to 24 UDBs

Flexible routing through the UDB array

Portions of UDBs can be shared or chained to enable larger functions

Flexible implementations of multiple digital functions, including timers, counters, PWM (with dead band generator), UART,
12C, SPI, and CRC generation/checking

21.2 Block Diagram

Figure 21-1 on page 176 illustrates the UDB as a construct containing a pair of basic PLD logic blocks, a datapath, and con-
trol, status, clock and reset functions.
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Figure 21-1. UDB Block Diagram
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How It Works

The major components of a UDB are:

PLDs (2) — These blocks take inputs from the routing
channel and form registered or combinational sum-of-
products logic to implement state machines, control for
datapath operations, conditioning inputs, and driving
outputs.

Datapath — This block contains a dynamically program-
mable ALU, four registers, two FIFOs, comparators, and
condition generation.

Control and Status — These modules provide a way for
CPU firmware to interact and synchronize with UDB
operation. Control registers drive internal routing, and
status registers read internal routing.

Reset and Clock Control — These modules provide
clock selection and enabling, and reset selection, for the
other blocks in the UDB.

Chaining Signals — The PLDs and datapath have
chaining signals that enable neighboring blocks to be
linked, to create higher precision functions.

Routing Channel — UDBs are connected to the routing
channel through a programmable switch matrix for con-
nections between blocks in one UDB, and to all other
UDBs in the array. Routing is covered in detail in the
UDB Array and Digital System Interconnect chapter on
page 217.

System Bus Interface — All registers and RAM in each
UDB are mapped into the system address space and are
accessible by the CPU and DMA as both 8-bit and 16-bit
data.

176

Routing Channel

21.3.1 PLDs

There are two “12C4” PLDs in each UDB. PLD blocks,
shown in Figure 21-2 on page 177, can be used to imple-
ment state machines, perform input or output data condition-
ing, and to create lookup tables (LUTs). PLDs may also be
configured to perform arithmetic functions, sequence the
datapath, and generate status. General purpose RTL can be
synthesized and mapped to the PLD blocks. This section
presents an overview of the PLD design.

A PLD has 12 inputs which feed across eight product terms
(PT) in the AND array. In a given product term, the true (T)
or complement (C) of the input can be selected. The output
of the PTs are inputs into the OR array. The 'C' in 12C4 indi-
cates that the OR terms are constant across all inputs, and
each OR input can programmatically access any or all of the
PTs. This structure gives maximum flexibility and ensures
that all inputs and outputs are permutable.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F



o CYPRESS

~ammp> EMBEDDED IN TOMORROW

0
-
o

!
—
=

Figure 21-2. PLD 12C4 Structure
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PLD Macrocells

The macrocell architecture is shown in Figure 21-3 on
page 178. The output drives the routing array, and can be
registered or combinational. The registered modes are D
Flip-Flop with true or inverted input, and Toggle Flip-Flop on
input high or low. The output register can be set or reset for
purposes of initialization, or asynchronously during opera-

tion under control of a routed signal.
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Figure 21-3. Macrocell Architecture
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PLD Macrocell Read Only Register

In addition to driving the routing array, the outputs of the macrocells from both PLDs are mapped into the address space as an
8-bit read only register, which can be accessed by the CPU or DMA.

Figure 21-4. PLD Macrocell Read Only Register
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21.3.1.2 PLD Carry Chain

PLDs are chained together in UDB address order. As shown
in Figure 21-5 the carry chain input “selin” is routed from the
previous UDB in the chain, through each macrocell in both

Universal Digital Blocks (UDBs)

of the PLDs, and then to the next UDB as the carry chain out
“selout”. To support the efficient mapping of arithmetic func-
tions, special product terms are generated and used in the
macrocell in conjunction with the carry chain.

Figure 21-5. PLD Carry Chain and Special Product Term Inputs
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21.3.1.3  PLD Configuration 21.3.2 Datapath

Each PLD appears to the CPU or DMA as a 16-bit wide
RAM. The AND array has 12 X 8 X 2 hits, or 24 bytes, for
programming, and the OR array has 4 x 8 bits, or 4 bytes,
for programming. In addition, each macrocell has one con-
figuration byte, resulting in 32 total configuration bytes per
PLD. Because each UDB contains two PLDs, there are 64
total PLD configuration bytes per UDB. See UDB Configura-
tion Address Space on page 214 for more information.
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The datapath, shown in Figure 21-6 below, contains an 8-bit
single-cycle ALU, with associated compare and condition
generation circuits. A datapath may be chained with
datapaths in neighboring UDBs to achieve higher precision
functions. The datapath includes a small dynamic configura-
tion RAM, which can dynamically select the operation to
perform in a given cycle.

The datapath is optimized to implement typical embedded
functions such as timers, counters, PWMs, PRS, CRC, shift-
ers and dead band generators. The addition of add and sub-
tract functions allow support for digital delta-sigma
operations.
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Figure 21-6. Datapath Top Level
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21.3.2.1

The following sections present an overview description of
key datapath features:

Overview

Dynamic Configuration

Dynamic configuration is the ability to change the datapath
function and interconnect on a cycle-by-cycle basis, under
sequencer control. This is implemented using the configura-
tion RAM, which stores eight unique configurations. The
address input to this RAM can be routed from any block
connected to the routing fabric, most typically PLD logic, I/O
pins, or other datapaths.

ALU

The ALU can perform eight general-purpose functions:
increment, decrement, add, subtract, AND, OR, XOR, and
PASS. Function selection is controlled by the configuration
RAM on a cycle-by-cycle basis. Independent shift (left, right,
nibble swap) and masking operations are available at the
output of the ALU.

Conditionals

Each datapath has two comparators, with bit masking
options, which can be configured to select a variety of data-
path register inputs for comparison. Other detectable condi-
tions include all zeros, all ones, and overflow. These
conditions form the primary datapath output selects to be
routed to the digital routing fabric or inputs to other func-
tions.

Built in CRC/PRS

The datapath has built-in support for single-cycle Cyclic
Redundancy Check (CRC) computation and Pseudo Ran-
dom Sequence (PRS) generation of arbitrary width and arbi-
trary polynomial specification. To achieve longer than 8-bit
CRC/PRS widths, signals may be chained between dat-
apaths. This feature is controlled dynamically, and therefore
can be interleaved with other functions.

Variable MSB

The most significant bit of an arithmetic and shift function
can be programmatically specified. This supports variable
width CRC/PRS functions and, in conjunction with ALU out-
put masking, can implement arbitrary width timers, counters,
and shift blocks.

Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, which can be
individually configured for direction as an input buffer (CPU
or DMA writes to the FIFO, datapath internals read the
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FIFO), or an output buffer (datapath internals write to the
FIFO, the CPU or DMA reads from the FIFO). These FIFOs
generate status that can be routed to interact with sequenc-
ers, interrupt, or DMA requests.

Chaining

The datapath can be configured to chain conditions and sig-
nals with neighboring datapaths. Shift, carry, capture, and
other conditional signals can be chained to form higher pre-
cision arithmetic, shift, and CRC/PRS functions.

Time Multiplexing

In applications that are oversampled, or do not need the
highest clock rates, the single ALU block in the datapath can
be efficiently shared between two sets of registers and con-
dition generators. ALU and shift outputs are registered and
can be used as inputs in subsequent cycles. Usage exam-
ples include support for 16-bit functions in one (8-bit) data-
path, or interleaving a CRC generation operation with a data
shift operation.

Datapath Inputs

The datapath has three types of inputs: configuration, con-
trol, and serial and parallel data. The configuration inputs
select the dynamic configuration RAM address. The control
inputs load the data registers from the FIFOs and capture
accumulator outputs into the FIFOs. Serial data inputs
include shift in and carry in. A parallel data input port allows
up to eight bits of data to be brought in from routing.

Datapath Outputs

There are a total of 16 signals generated in the datapath.
Some of these signals are conditional signals (for example,
compares), some are status signals (for example, FIFO sta-
tus), and the rest are data signals (for example, shift out).
These 16 signals are multiplexed into the six datapath out-
puts and then driven to the routing matrix. By default the
outputs are single synchronized (pipelined). A combinational
output option is also available for these outputs.
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Datapath Working Registers

Each datapath module has six 8-bit working registers. All
registers are readable and writable by CPU or DMA:

Table 21-1. Datapath Working Registers
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Table 21-2. FIFO Modes and Configurations

The control to load the FIFO from the datapath source is
sampled on the currently selected datapath clock (normal)
or the bus clock (fast). This allows captures to occur at the
highest rate in the system (bus clock), independent of the
datapath clock.

Normal/Fast

Type Name Description

The accumulators may be both a source and a
destination for the ALU. They may also be loaded
from a Data register or a FIFO. The accumulators
typically contain the current value of a function,
such as a count, CRC, or shift. These registers
are nonretention; they lose their values in sleep
and are reset to 0x00 on wakeup.

Accumulator | A0, A1

When this mode is enabled, and the FIFO is in output
mode, a read by the CPU or DMA of the associated accu-
mulator (AO for FO, Al for F1) initiates a synchronous trans-
fer of the accumulator value into the FIFO. The captured
value may then be immediately read from the FIFO. If
chaining is enabled, the operation follows the chain to the
MS block for atomic reads by datapaths of multi-byte val-
ues.

Software
Capture

The Data registers typically contain constant data
for a function, such as a PWM compare value,
timer period, or CRC polynomial. These registers
retain their values across sleep intervals.

Data DO, D1

When the datapath is being clocked asynchronously to the
bus clock, the FIFO status signals can be routed to the rest
of the datapath either directly, single sampled to the DP
clock, or double sampled in the case of an asynchronous
DP clock

Asynch

The two 4-byte FIFOs provide both a source and
a destination for buffered data. The FIFOs can be
configured as both input buffers, both output buf-
fers, or as one input buffer and one output buffer.
Status signals indicate the read and write status
of these registers. Usage examples include buff-
ered TX and RX data in the SPI or UART and
buffered PWM compare and buffered timer
period data. These registers are nonretention;
they lose their values in sleep and are reset to

FIFOs FO, F1

Independent | Each FIFO has a control bit to invert polarity of the FIFO

Clock Polarity | clock with respect to the datapath clock.

0x00 on wakeup.

21.3.2.2 Datapath FIFOs

FIFO Modes and Configurations

Each FIFO has a variety of operation modes and configura-
tions available:

Table 21-2. FIFO Modes and Configurations

Mode Description

In input mode the CPU or DMA writes to the FIFO and the
data is read and consumed by the datapath internals. In
output mode the FIFO is written to by the datapath internals
and is read and consumed by the CPU or DMA

Input/Output

The FIFO operates as a single buffer with no status. Data
written to the FIFO is immediately available for reading, and
can be overwritten at anytime.

Single Buffer

The control to load the FIFO from the datapath internals
Level/Edge

can be either level or edge triggered.
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Figure 21-7 shows the possible FIFO configurations con-
trolled by the input/output modes. The TX/RX mode has one
FIFO in input mode and the other in output mode. The pri-
mary usage example of this configuration is SPI. The dual
capture configuration provides independent capture of AO
and A1, or two separately controlled captures of either A0 or
Al. Finally, the dual buffer mode can provide buffered peri-
ods and compares, or two independent periods/compares.
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Figure 21-7. FIFO Configurations
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Figure 21-8 shows a detailed view of the FIFO sources and sinks.

Figure 21-8. FIFO Sources and Sinks
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When the FIFO is in input mode, the source is the system bus and the sinks are the Dx and Ax registers. When in output
mode, the sources include the Ax registers and the ALU, and the sink is the system bus. The multiplexer selection is statically
set in UDB configuration register CFG15 as shown in the following table for the FO_INSEL[1:0] or F1_INSEL[1:0]:

Table 21-3. FIFO Multiplexer Set in UDB Configuration Register

Fx_INSEL[1:0] Description

00 Input Mode - System bus writes the FIFO, FIFO output destination is Ax or Dx.

01 Output Mode - FIFO input source is A0, FIFO output destination is the system bus.

10 Output Mode - FIFO input source is A1, FIFO output destination is the system bus.

11 Output Mode - FIFO input source is the ALU output, FIFO output destination is the system bus.

FIFO Status

Each FIFO generates two status signals, “bus” and “block,” which are sent to the UDB routing through the datapath output
multiplexer. The “bus” status can be used to assert an interrupt or DMA request to read/write the FIFO. The “block” status is
primarily intended to provide the FIFO state to the UDB internals. The meanings of the status bits depend on the configured
direction (Fx_INSEL[1:0]) and the FIFO level bits. The FIFO level bits (Fx_LVL) are set in the Auxiliary Control Working regis-
ter in working register space. Options are shown in the following table:

Table 21-4. FIFO Status Options

Fx_INSEL[1:0] Fx_LVL Status Signal Description
Input 0 Not Full Bus Status Asserted when there is room for at least 1 byte in the FIFO.
Input 1 At Least Half Empty | Bus Status Asserted when there is room for at least 2 bytes in the FIFO.

Asserted when there are no bytes left in the FIFO. When not empty, the datapath
Input NA Empty Block Status internals may consume bytes. When empty the datapath may idle or generate an
underrun condition.

Output 0 Not Empty Bus Status Asserted when there is at least 1 byte available to be read from the FIFO.

Output 1 At Least Half Full Bus Status Asserted when there are at least 2 bytes available to be read from the FIFO.
Asserted when the FIFO is full. When not full, the datapath internals may write

Output NA Full Block Status bytes to the FIFO. When full, the datapath may idle or generate an overrun condi-
tion.

FIFO lllustrated Operation

Figure 21-9 on page 185 illustrates a typical sequence of reads and writes and the associated status generation. Although the
figure shows reads and writes occurring at different times, a read and write can also occur simultaneously.
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Figure 21-9. Detailed FIFO Operation Sinks
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FIFO Fast Mode (FIFO FAST)

When the FIFO is configured for output, the FIFO load operation normally uses the currently selected datapath clock for sam-
pling the write signal. As shown in Figure 21-10, with the FIFO fast mode set, the bus clock can be optionally selected for this
operation. Used in conjunction with edge sensitive mode, this operation reduces the latency of accumulator-to-FIFO transfer
from the resolution of the DP clock to the resolution of the bus clock, which can be much higher. This allows the CPU or DMA
to read the captured result in the FIFO with minimal latency.

As shown in Figure 21-10, the fast load operation is independent of the currently selected datapath clock, however, using the
bus clock may cause higher power consumption.

Figure 21-10. FIFO Fast Configuration Sinks
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FIFO Edge/Level Write Mode

There are two modes for writing the FIFO from the datapath.
In the first mode, data is synchronously transferred from the
accumulators to the FIFOs. The control for that write
(FX_LD) is typically generated from a state machine or con-
dition that is synchronous to the datapath clock. The FIFO
will be written in any cycle where the input load control is a
'"1". In the second mode, the FIFO is used to capture the
value of the accumulator in response to a positive edge of
the FX_LD signal. In this mode the duty cycle of the wave-
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form is arbitrary (however, it must be at least one datapath
clock cycle in width). An example of this mode is capturing
the value of the accumulator using an external pin input as a
trigger. The limitation of this mode is that the input control
must revert to 'O’ for at least one cycle before another posi-
tive edge is detected.

Figure 21-11 shows the edge detect option on the FX_LD
control input. One bit for this option sets the mode for both
FIFOs in a UDB. Note that edge detection is sampled at the
rate of the selected FIFO clock.

Figure 21-11. Edge Detect Option for Internal FIFO Write Sinks
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FIFO Software Capture Mode

A common and important requirement is to allow the CPU or DMA the ability to reliably read the contents of an accumulator
during normal operation. This is done with software capture and is enabled by setting the FIFO Cap configuration bit. This bit
applies to both FIFOs in a UDB, but is only operational when a FIFO is in output mode. When using software capture, FO
should be set to load from AO and F1 from Al.

As shown in Figure 21-12, reading the accumulator triggers a write to the FIFO from that accumulator. This signal is chained
so that a read of a given byte simultaneously captures accumulators in all chained UDBs. This allows an 8-bit processor to
reliably read 16 bits or more simultaneously. The data returned in the read of the accumulator should be ignored; the captured
value may be read from the FIFOs immediately.

The routed FX_LD signal, which generates a FIFO load, is ORed with the software capture signal; the results can be unpre-
dictable when both hardware and software capture are used at the same time. As a general rule these functions should be
mutually exclusive, however, hardware and software capture can be used simultaneously with the following settings:

m  FIFO capture clocking mode is set to FIFO FAST
m  FIFO write mode is set to FIFO EDGE

With these settings, hardware and software capture work essentially the same and in any given bus clock cycle, either signal
asserted initiates a capture.

It is also recommended to clear the target FIFO in firmware (ACTL register) before initiating a software capture. This initializes
the FIFO read and write pointers to a known state.
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Figure 21-12. Software Capture Configuration
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FIFO Control Bits

There are four bits in the Auxiliary Control register that may
be used to control the FIFO during normal operation.

The FIFOO CLR and FIFO1 CLR bits are used to reset or
flush the FIFO. When a '1' is written to one of these bits, the
associated FIFO is reset. The bit must be written back to '0'
for FIFO operation to continue. If the bit is left asserted, the
given FIFO is disabled and operates as a one byte buffer
without status. Data can be written to the FIFO; the data is
immediately available for reading and can be overwritten at
anytime. Data direction using the Fx INSEL[1:0] configura-
tion bits is still valid.

The FIFOO LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in the table below.

Table 21-5. FIFO Level Control Bits

FIFOx Input Mode Output Mode
LVL (Bus is Writing FIFO) (Bus is Reading FIFO)
0 Not Full Not Empty

At least 1 byte can be written At least 1 byte can be read

At Least Half Empty At Least Half Full
At least 2 bytes can be written | At least 2 bytes can be read

FIFO Asynchronous Operation

Figure 21-13 illustrates the concept of asynchronous FIFO
operation. As an example, assume FO is set for input mode

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F
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and F1 is set for output mode, which is a typical configura-
tion for TX and RX registers.

On the TX side, the datapath state machine uses "empty" to
determine if there are any bytes available to consume.
Empty is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus write. When cleared,
the status is synchronized back to the DP state machine.

On the RX side, the datapath state machine uses “full” to
determine whether there is a space left to write to the FIFO.
Full is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus read. When cleared,
the status is synchronized back to the DP state machine.

A single FIFO ASYNCH bhit is used to enable this synchroni-
zation method; when set it applies to both FIFOs. It is only
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applied to the block status, as it is assumed that bus status
is naturally synchronized by the interrupt process.

Table 21-6. FIFO Block Status Synchronization Options
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FIFO Overflow Operation

Use FIFO status signaling to safely implement both internal
(datapath) and external (CPU or DMA) reads and writes.
There is no built-in protection from underflow and overflow

ASYNC | ADD SYNC Operation Usage Model . . .
P £ conditions. If the FIFO is full, and subsequent writes occur
CPU read/write status changes :
o o Synchronous to | occur at bus clock resolution, Can (overflow), the neyv data overwrites the front of the FIFO (the
bus clock be used for minimum latency if bus data currently being output, the next data to read). If the
clock timing can be met. .
FIFO is empty, and subsequent reads occur (underflow), the
This should be the default synchro- read value is undefined. FIFO pointers remain accurate
nous operating mode. When the
Re-sampled CPU read/write status changes are regardless of underflow and overflow.
0 1 from bus clock |synchronously re-sampled with the
to DP clock currently selected DP clock. Gives
a full cycle of DP clock setup time
to the UDB logic.
1 0 Reserved -
Double syn- When a free running asynchronous
€ Sy DP clock is in use, this setting can
1 1 chronized from be used to double synchronize the
EILCI)SCISIOCK toDP CPU read and write actions to the
DP clock.
Figure 21-13. FIFO Asynchronous Operation
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FIFO Clock Inversion Option

Each FIFO has a control bit called Fx CK INV that controls
the polarity of the FIFO clock, with respect to the polarity of
the DP clock. By default the FIFO operates at the same

FIFO Dynamic Control

Normally, the FIFOs are configured statically in either input
or output mode. As an alternative, each FIFO can be config-
ured into a mode where the direction is controlled dynami-
cally, that is, by routed signals. One configuration bit per
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polarity as the DP clock. When this bit is set, the FIFO oper-
ates at the opposite polarity as the DP clock. This provides
support for “both clock edge” communication protocols,
such as SPI.

FIFO (Fx DYN) enables the mode. Figure 21-14 on
page 189 shows the configurations available in dynamic
FIFO mode.
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Figure 21-14. FIFO Dynamic Mode
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In internal access mode, the datapath can read and write
the FIFO. In this configuration, the Fx INSEL bits must be
configured to select the source for the FIFO writes. Fx
INSEL = 0 (CPU bus source) is invalid in this mode; they
can only be 1, 2 or 3 (A0, A1, or ALU). Note that the only
read access is to the associated accumulator; the data reg-
ister destination is not available in this mode.

In external access mode, the CPU or DMA can both read
and write the FIFO.

The configuration between internal and external access is
dynamically switchable using datapath routing signals. The
datapath input signals dO_load and d1_load are used for
this control. Note that in the dynamic control mode, dO_load
and d1_load are not available for their normal use in loading
the DO/D1 registers from FO/F1. The dx_load signals can be
driven by any routed signal, including constants.

In one usage example, starting with external access
(dx_load == 1), the CPU or DMA can write one or more
bytes of data to the FIFO. Then toggling to internal access
(dx_load == 0), the datapath can perform operations on the
data. Then toggling back to external access, the CPU or
DMA can read the result of the computation.

Because the Fx INSEL must always be set to 01, 10 or 11
(A0, A1, or ALU), which is “output mode” in normal opera-

-4—— UDB Local Data Bus—»

v

FIFO Fx

v
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External Access

tion, the FIFO status signals have the following definitions
(also dependent on Fx LVL control):

Table 21-7. FIFO Status

Status Signal Meaning FxLVL=0 FxLVL=1
fx_blk_stat Write Status | FIFO full FIFO full
fx_bus_stat Read Status FIFO not empty | At least ¥% full

Because the datapath and CPU may both write and read the
FIFO, these signals are no longer considered “block” and
“bus” status. The blk_stat signal is used for write status, and
the bus_stat signal is used for read status.

21.3.2.3 FIFO Status

There are four FIFO status signals, two for each FIFO:
fifoO_bus_stat, fifoO_blk_stat, fifol bus_stat and
fifol_blk_stat. The meaning of these signals depends on the
direction of the given FIFO, which is determined by static
configuration. FIFO status is covered in detail in section
21.3.2.2 Datapath FIFOs on page 182.

21.3.2.4  Datapath ALU

The ALU core consists of three independent 8-bit program-
mable functions, which include an arithmetic/logic unit, a
shifter unit, and a mask unit.
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Arithmetic and Logic Operation

The ALU functions, which are configured dynamically by the
dynamic configuration RAM, are shown in the following
table:

Table 21-8. ALU Functions

Func[2:0] Function Operation

000 PASS srca

001 INC ++srca

010 DEC --srca

011 ADD srca + srch

100 SuB srca - srch

101 XOR srca ” srch

110 AND srca & srch

111 OR srca | srcb
Carry In

The carry in is used in arithmetic operations. There is a
default carry in value for certain functions as shown in
Table 21-9.
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When a routed carry is used, the meaning with respect to
each arithmetic function is shown in Table 21-11. Note that
in the case of the decrement and subtract functions, the
carry is active low (inverted).

Table 21-11. Routed Carry In Functions

. Carry In Carry In Carry In
Function . . .
Polarity Active Inactive
INC True ++srca srca
DEC Inverted --srca srca
ADD True (srca +srch) +1 | srca + srch
SuUB Inverted (srca - srch) - 1 (srca - srch)
Carry Out

The carry out is a selectable datapath output and is derived
from the currently defined MSB position, which is statically
programmable. This value is also chained to the next most
significant block as an optional carry in. Note that in the
case of decrement and subtract functions, the carry out is
inverted.

Table 21-12. Carry Out Functions

Table 21-9. Carry In Functions o Carry Out Carry Out Carry Out
Function Operation Default Carry In Implementation Polarity Active Inactive
INC ++srca srca + 00h + ci, where ci is forced to 1 INC True ++srca == 0 srca
DEC --srca srca + ffh + ci, where ci is forced to 0 DEC Inverted --srca==-1 srca
ADD srca + srch srca + srcb + ci, where ci is forced to 0 ADD True srca + srch > 255 | srca + srch
SuUB srca - srch srca + ~srcb + ci, where ci is forced to 1 SUB Inverted srca - srcb <0 (srca - srch)

In addition to this default arithmetic mode for carry opera-
tion, there are three additional carry options. The ClI SELA
and Cl SELB configuration bits determine the carry in for a
given cycle. Dynamic configuration RAM selects either the A
or B configuration on a cycle-by-cycle basis. The options are
defined in Table 21-10.

Table 21-10. Additional Carry In Functions

CISEL A

Carry Mode
CISEL B

Description

Default arithmetic mode as described

00 Default in Table 21-9.

Carry Flag, result of the carry from
the previous cycle. This mode is used
to implement add with carry and sub-
tract with borrow operations. It can be
used in successive cycles to emulate
a double precision operation.

01 Registered

Carry is generated elsewhere and
routed to this input. This mode can
be used to implement controllable
counters.

10 Routed

Carry is chained from the previous
datapath. This mode can be used to
implement single cycle operations of
higher precision involving two or
more datapaths.

11 Chained
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Carry Structure

Options for carry in, and for MSB selection for carry out gen-
eration, are shown in Figure 21-15 on page 191. The regis-
tered carry out value may be selected as the carry in for a
subsequent arithmetic operation. This feature can be used
to implement higher precision functions in multiple cycles.
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Figure 21-15. Carry Operation

Selected MSB

Arithmetic ALU Function
(inc, dec, add, sub)

Default function value

ALU ALU ALU ALU ALU ALU | ALU ALU “ Chained (from prev datapath)
Bit 7 Bit 6 Bit 5 Bit4 [ Bit3 [ Bit2 | Bitl [ Bit 0 Registered (from co_msb_reg)
Routed (from interconnect)
co_msb

(to DP output mux)

co_msb_reqg «——

Shift Operation Table 21-14. Shift In Functions

i i i - SI SEL A
The shift operatlon occurs independently of the ALU opera Shift In Source SeserpET
tion, according to Table 21-13 SISELB
The default input is the value of the
- i i i DEF Sl configuration bit (fixed 1 or
Table 21-13. Shift Operation Functions 00 Default/Arithmetic | 0). However, if the MSB Sl bit is set,
hiftl1: E ; then the default input is the currently
Shift[1:0] unction defined MSB (for right shift only).
00 Pass The shift in value is driven by the cur-
01 Shift Left rent registered shift out value (from
. ’ the previous cycle). The shift left
10 Shift Right 01 Registered operation uses the last shift out left
1 Nibble Swap value. The shift right operation uses
the last shift out right value.
. . . . Shift in is selected from the routing
A shift out value is available as a datapath output. Both shift 10 Routed channel (the SI input).
out rlght (sor) ar?d shlft.out Igft (sgl_msb) share that oqtput Shift in left is routed from the right
selection. A static configuration bit (SHIFT SEL in register . datapath neighbor and shift in right is
. . . : 1 Chained routed from the left datapath neigh-
CFG15) determines which shift output is used as a datapath bor

output. When no shift is occurring, the sor and sol_msb sig-
nal is defined as the LSB or MSB of the ALU function,
respectively.

The shift out left data comes from the currently defined MSB
position, and the data that is shifted in from the left (in a shift
right operation) goes into the currently defined MSB posi-
tion. Both shift out data (left or right) are registered and can
be used in a subsequent cycle. This feature can be used to
implement a higher precision shift in multiple cycles.

The SI SELA and S| SELB configuration bits determine the
shift in data for a given operation. Dynamic configuration
RAM selects the A or B configuration on a cycle-by-cycle

basis. Shift in data is only valid for left and right shift; it is not
used for pass and nibble swap. The selections and usage
apply to both left and right shift directions and are shown in
Table 21-14.

Figure 21-16. Shift Operation

Select default value or
arithmetic shift

¥

Registered (sor_reg)

Default (tie value)

shift in left (sil)
Selected MSB
i Shift right or shift left

Routed (from interconnect)

Chained (from next Datapath)

sor_reg

shift out right (sor)
(to DP output mux)

]

e

shift out left (sol_msb)

(to DP output mux)
sol_msb_reg
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Default (tie value)

Registered (from sol_msb_reg)
shiftin right (sir) Routed (from interconnect)

Chained (from prev Datapath)
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Note that the bits that are isolated by the MSB selection are
still shifted. In the example shown, bit 7 still shifts in the sil
value on a right shift and bit 5 shifts in bit 4 on a left shift.
The shift out either right or left from the isolated bits is lost.

ALU Masking Operation

An 8-bit mask register in the UDB static configuration regis-
ter space defines the masking operation. In this operation,
the output of the ALU is masked (ANDed) with the value in
the mask register. A typical use for the ALU mask function is
to implement free-running timers and counters in power of
two resolutions.

21.3.25

The datapath has a total of nine inputs as shown in Table
24-186, including six inputs from the channel routing. These
consist of the configuration RAM address, FIFO and data
register load control signals, and the data inputs shift in and
carry in.

Datapath Inputs and Multiplexing

o CYPRESS
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Table 21-15. Datapath Inputs

Input Description
Asynchronous dynamic configuration RAM address. There are
RAD2 eight 16-bit words, which are user programmable. Each word
RAD1 contains the datapath control bits for the current cycle.
RADO Sequences of instructions can be controlled by these address
inputs.
When asserted in a given cycle, the selected FIFO is loaded
with data from one of the AO or A1 accumulators or from the
FO LD output of the ALU. The source is selected by the Fx
F1LD INSEL[1:0] configuration bits. This input is edge sensitive. Itis
sampled at the datapath clock; when a '0' to '1' transition is
detected, a load occurs at the subsequent clock edge.
When asserted in a given cycle, the Dx register is loaded from
DO LD associated FIFO Fx. This input is edge sensitive. It is sampled
D1LD at the datapath clock; when a '0' to '1' transition is detected, a
load occurs at the subsequent clock edge.
sl This is a data input value that can be used for either shift in left
or shift in right.
cl This is the carry in value used when the carry in select control
is set to "routed carry."

As shown in Figure 21-17, each input has a 6-to-1 multi-
plexer, therefore, all inputs are permutable. Inputs are han-
dled in one of two ways, either level sensitive or edge
sensitive. RAM address, shift in and data in values are level
sensitive; FIFO and data register load signals are edge sen-
sitive.

Figure 21-17. Datapath Input Select

{0, dp_in[5:0], 0}

» rado

CFGXx
RADO MUX[2:0]

{0, dp_in[5:0], O}

(similar for radl, rad2, si, ci)

These inputs are

edge sensitive ———__

CFGx
FO LD MUX[2:0]

21.3.2.6 CRC/PRS Support

The datapath can support Cyclic Redundancy Checking
(CRC) and Pseudo Random Sequence (PRS) generation.
Chaining signals are routed between datapath blocks to
support CRC/PRS bit lengths of longer than 8 bits.

The most significant bit (MSB) of the most significant block
in the CRC/PRS computation is selected and routed (and
chained across blocks) to the least significant block. The
MSB is then XORed with the data input (S| data) to provide
the feedback (FB) signal. The FB signal is then routed (and
chained across blocks) to the most significant block. This
feedback value is used in all blocks to gate the XOR of the
polynomial (from the DataO or Datal register) with the cur-
rent accumulator value.

192

» fO_Id
(similar for f1_Id, dO_Id, d1_lId)

Figure 21-18 shows the structural configuration for the CRC
operation. The PRS configuration is identical except that the
shift in (SI) is tied to '0'". In the PRS configuration, DO or D1
contain the polynomial value, while AO or Al contain the ini-
tial (seed) value and the CRC residual value at the end of
the computation.

To enable CRC operation, the CFB_EN bit in the dynamic
configuration RAM must be set to '1". This enables the AND
of SRCB ALU input with the CRC feedback signal. When set
to zero, the feedback signal is driven to '1', which allows for
normal arithmetic operation. Dynamic control of this bit on a
cycle-by-cycle basis gives the capability to interleave a
CRC/PRS operation with other arithmetic operations.
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Figure 21-18. CRC Functional Structure

0 = [

iy

R

MSB |

(most significant bit)

(==

AO/A1
(CRC)
FB ((@ S
(feedback) (shiftin)
srch| rsrea Tie input to
u zero for PRS
ALU operation
T xom)
SHIFTER
(LEFT)

CRC/PRS Chaining

Figure 21-19 illustrates an example of CRC/PRS chaining across three UDBs. This scenario can support a 17- to 24-bit oper-
ation. The chaining control bits are set according to the position of the datapath in the chain as shown.

Figure 21-19. CRC/PRS Chaining Configuration

Set msb_sel CHAIN MSB =1 CHAIN MSB =1
CHAINFB =1 CHAINFB =1
cmsbi cmsbo - cmsbi cmsbo - cmsbi cmsbo
UDB 2 UDB 1 UDB 0 sir l«¢—— CRC data in
cfbo cfbi [ cfbo cfbi [ cfbo cfbi

How the CRC/PRS feedback signal (cfbo, cfbi) is chained:

m If a given block is the least significant block, then the
feedback signal is generated in that block from the built-
in logic that takes the shift in from the right (sir) and
XORs it with the MSB signal. (For PRS, the "sir" signal is
tied to '0'".)

m If a given block is not the least significant block, the
CHAIN FB configuration bit must be set and the feed-
back is chained from the previous block in the chain.

How the CRC/PRS MSB signal (cmsbo, cmsbi) is chained:
m If a given block is the most significant block, the MSB bit
(according to the polynomial selected) is configured

using the MSB_SEL configuration bits.

m If a given block is not the most significant block, the
CHAIN MSB configuration bit must be set and the MSB
signal is chained from the next block in the chain.

PSoC 5LP Architecture TRM, Document No. 001-78426 Rev. *F

CRC/PRS Polynomial Specification

As an example of how to configure the polynomial for pro-
gramming into the associated DO/D1 register, consider the
CCITT CRC-16 polynomial, which is defined as x16 + x'?
+x° + 1. The method for deriving the data format from the
polynomial is shown in Figure 21-20.

The X° term is inherently always '1' and therefore does not
need to be programmed. For each of the remaining terms in
the polynomial, a '1' is set in the appropriate position in the
alignment shown.

Note This polynomial format is slightly different from the
format normally specified in HEX. For example, the CCITT
CRC16 polynomial is typically denoted as 1021H. To con-
vert to the format required for datapath operation, shift right
by one and add a '1' in the MSB bit. In this case, the correct
polynomial value to load into the DO or D1 register is 8810H
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Figure 21-20. CCITT CRC16 Polynomial Format

X16 X15 X14 X13 X12 Xll XlO XQ X8

X x| x| x| x| x| x| x

~

CCITT 16-Bit Polynomial is 0x8810

Example CRC/PRS Configuration

The following is a summary of CRC/PRS configuration
requirements, assuming that DO is the polynomial and the
CRC/PRS is computed in AO:

1. Select a suitable polynomial (example above) and write
it into DO.

2. Select a suitable seed value (for example, all zeros for
CRC, all ones for PRS) and write it into AO.

3. Configure chaining if necessary as described above.

4. Select the MSB position as defined in the polynomial
from the MSB_SEL static configuration register bits and
set the MSB_EN register bit.

5. Configure the dynamic configuration RAM word fields:
a. Select DO as the ALU "SRCB" (ALU B Input Source)

Select A0 as the ALU "SRCA" (ALU A Input Source)

Select "XOR" for the ALU function

Select "SHIFT LEFT" for the SHIFT function

Select "CFB_EN" to enable the support for CRC/
PRS

f. Select ALU as the A0 write source

® oo

If a CRC operation, configure "shift in right" for input data
from routing and supply input on each clock. If a PRS opera-
tion, tie "shift in right" to '0'".

Clocking the UDB with this configuration generates the
required CRC or outputs the MSB, which may be output to
the routing for the PRS sequence.

External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS) to
enable support for external computation of a CRC or PRS.
As shown in Figure 21-21, computation of the CRC feed-
back is done in a PLD block. When the bit is set, the CRC
feedback signal is driven directly from the CI (Carry In) data-
path input selection mux, bypassing the internal computa-
tion. The figure shows a simple configuration that supports
up to an 8-bit CRC or PRS. Normally the built-in circuitry is

used, but this feature gives the capability for more elaborate
configurations, such as up to a 16-bhit CRC/PRS function in
one UDB using time division multiplexing.

In this mode, the dynamic configuration RAM bit CFB_EN
still controls whether the CRC feedback signal is ANDed
with the SRCB ALU input. Therefore, as with the built-in
CRC/PRS operation, the function can be interleaved with
other functions if desired.
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Figure 21-21. External CRC/PRS Mode
PLD
Tie s?ift in to S|
zero for PRS -
operation (it i) IﬁD
Routing Routing
D0/D1
B % """" % % (POLY)
When the
E [‘j ['j AO/AL EXT_CRCPRS bit is
-------- % (CRC) set, the Cl selection
drives the CRC
ﬂ feedback line.
MSB ? ? ? FB N
(Most Significant Bit)y |  \_/| | ====<=<"" (feedback) =
Cl Mux o
r r srch [ srca 3
L L1 LD Ay &
:7 :7 :j (XOR) (‘
SHIFTER w
"""" (LEFT) SI Mux
21.3.2.7 Datapath Outputs and Multiplexing There are a total of six datapath outputs. As shown in

Figure 21-22, each output has a 16-1 multiplexer that allows
any of these 16 signals to be routed to any of the datapath
outputs.

Conditions are generated from the registered accumulator
values, ALU outputs, and FIFO status. These conditions can
be driven to the digital routing for use in other UDB blocks,
for use as interrupts or DMA requests, or to I/O pins. The 16
possible conditions are shown in the table below:

Figure 21-22. Output Mux Connections

N ) Output Mux
Table 21-16. Datapath Condition Generation
Name Condition Chain? Description
o
ce0 Compare Equal A0 == DO ce0 —
—
clo Compare Less Than |Y A0 < DO clO —»
z0 Zero Detect Y A0 == 00h z0 —»
ff0 Ones Detect Y A0 = FFh ffO —m @
Al or AO == D1 or AQ cel |
cel Compare Equal Y (dynamic selection) 9
—» 0 =
cll Compare Less Than |Y Al or AO < D1 or AQ ot 2
p (dynamic selection) 71 —m © "g*
z1 Zero Detect Al ==00h 1w~ = 6 P dp_outf5:0]
1 Ones Detect Al ==FFh o O
ov_msb — '
ov_msb Overflow Carry(msb) ~ Carry(msb-1) 5
c f MSB defined co_msb==® &
arry out o efine
co_msb Carry Out Y bit cmsb—m 3 e
sor
cmsb CRC MSB Y MSB of CRC/PRS function ‘:'
50 Shift Out Y Selection of shift output SOLMSD™™ 7 0 bik_stat—»| S
Definition depends on FIFO ™
fO_blk_stat | FIFOO Block Status | N configuration f1_blk_stat—» <
initi fO_bus_stat —» &
f1_blk_stat |FIFO1 Block Status | N Definition depends on FIFO -
— = configuration @
Definition d 4 FIFO fl_bus_stat—# —
efinition depends on
fO_bus_stat | FIFOO Bus Status N configuration
Definition depends on FIFO
f1_bus_stat | FIFO1 Bus Status N configuration
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Compares

There are two compares, one of which has fixed sources
(Compare 0) and the other has dynamically selectable
sources (Compare 1). Each compare has an 8-bit statically
programmed mask register, which enables the compare to
occur in a specified bit field. By default, the masking is off
(all bits are compared) and must be enabled.

Comparator 1 inputs are dynamically configurable. As
shown in the table below, there are four options for Compar-
ator 1, which applies to both the "less than" and the "equal”
conditions. The CMP SELA and CMP SELB configuration
bits determine the possible compare configurations. A

o CYPRESS
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dynamic RAM bit selects one of the A or B configurations on
a cycle-by-cycle basis.

Table 21-17. Compare Configuration

CMP SEL A : .
Comparator 1 Compare Configuration
CMP SEL B
00 Al Compare to D1
01 Al Compare to AO
10 AO Compare to D1
11 A0 Compare to A0

Compare 0 and Compare 1 are independently chainable to
the conditions generated in the previous datapath (in
addressing order). Whether to chain compares or not is stat-
ically specified in UDB configuration registers. Figure 21-23
illustrates compare equal chaining, which is just an ANDing
of the compare equal in this block with the chained input
from the previous block.

Figure 21-23. Compare Equal Chaining

and chaining)

CFGx
CCHAINO

ce0 4@ ce0Qi
(to routing (from chaining)

Compare Equal

Figure 21-24 illustrates compare less than chaining. In this case, the “less than” is formed by the compare less than output in
this block, which is unconditional. This is ORed with the condition where this block is equal, and the chained input from the

previous block is asserted as less than.

Figure 21-24. Compare Less Than Chaining

CFGx
CCHAINO

/ clOi
N

clo
(to routing
and chaining)

(from chaining)

Compare
Less Than

Compare
Equal
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All Zeros and All Ones Detect

Each accumulator has dedicated all zeros detect and all
ones detect. These conditions are statically chainable as
specified in UDB configuration registers. Whether to chain
these conditions is statically specified in UDB configuration
registers. Chaining of zero detect is the same concept as
the compare equal. Successive chained data is ANDed if
the chaining is enabled.

Overflow

Overflow is defined as the XOR of the carry into the MSB
and the carry out of the MSB. The computation is done on

Universal 